Metamath Proof Explorer


Theorem dedth4h

Description: Weak deduction theorem eliminating four hypotheses. See comments in dedth2h . (Contributed by NM, 16-May-1999)

Ref Expression
Hypotheses dedth4h.1 A = if φ A R τ η
dedth4h.2 B = if ψ B S η ζ
dedth4h.3 C = if χ C F ζ σ
dedth4h.4 D = if θ D G σ ρ
dedth4h.5 ρ
Assertion dedth4h φ ψ χ θ τ

Proof

Step Hyp Ref Expression
1 dedth4h.1 A = if φ A R τ η
2 dedth4h.2 B = if ψ B S η ζ
3 dedth4h.3 C = if χ C F ζ σ
4 dedth4h.4 D = if θ D G σ ρ
5 dedth4h.5 ρ
6 1 imbi2d A = if φ A R χ θ τ χ θ η
7 2 imbi2d B = if ψ B S χ θ η χ θ ζ
8 3 4 5 dedth2h χ θ ζ
9 6 7 8 dedth2h φ ψ χ θ τ
10 9 imp φ ψ χ θ τ