Metamath Proof Explorer


Theorem dedth4v

Description: Weak deduction theorem for eliminating a hypothesis with 4 class variables. See comments in dedth2v . (Contributed by NM, 21-Apr-2007) (Proof shortened by Eric Schmidt, 28-Jul-2009)

Ref Expression
Hypotheses dedth4v.1 A = if φ A R ψ χ
dedth4v.2 B = if φ B S χ θ
dedth4v.3 C = if φ C T θ τ
dedth4v.4 D = if φ D U τ η
dedth4v.5 η
Assertion dedth4v φ ψ

Proof

Step Hyp Ref Expression
1 dedth4v.1 A = if φ A R ψ χ
2 dedth4v.2 B = if φ B S χ θ
3 dedth4v.3 C = if φ C T θ τ
4 dedth4v.4 D = if φ D U τ η
5 dedth4v.5 η
6 1 2 3 4 5 dedth4h φ φ φ φ ψ
7 6 anidms φ φ ψ
8 7 anidms φ ψ