Metamath Proof Explorer


Theorem deg1add

Description: Exact degree of a sum of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1addle.y Y = Poly 1 R
deg1addle.d D = deg 1 R
deg1addle.r φ R Ring
deg1addle.b B = Base Y
deg1addle.p + ˙ = + Y
deg1addle.f φ F B
deg1addle.g φ G B
deg1add.l φ D G < D F
Assertion deg1add φ D F + ˙ G = D F

Proof

Step Hyp Ref Expression
1 deg1addle.y Y = Poly 1 R
2 deg1addle.d D = deg 1 R
3 deg1addle.r φ R Ring
4 deg1addle.b B = Base Y
5 deg1addle.p + ˙ = + Y
6 deg1addle.f φ F B
7 deg1addle.g φ G B
8 deg1add.l φ D G < D F
9 1 ply1ring R Ring Y Ring
10 3 9 syl φ Y Ring
11 4 5 ringacl Y Ring F B G B F + ˙ G B
12 10 6 7 11 syl3anc φ F + ˙ G B
13 2 1 4 deg1xrcl F + ˙ G B D F + ˙ G *
14 12 13 syl φ D F + ˙ G *
15 2 1 4 deg1xrcl F B D F *
16 6 15 syl φ D F *
17 1 2 3 4 5 6 7 deg1addle φ D F + ˙ G if D F D G D G D F
18 2 1 4 deg1xrcl G B D G *
19 7 18 syl φ D G *
20 xrltnle D G * D F * D G < D F ¬ D F D G
21 19 16 20 syl2anc φ D G < D F ¬ D F D G
22 8 21 mpbid φ ¬ D F D G
23 22 iffalsed φ if D F D G D G D F = D F
24 17 23 breqtrd φ D F + ˙ G D F
25 nltmnf D G * ¬ D G < −∞
26 19 25 syl φ ¬ D G < −∞
27 8 adantr φ F = 0 Y D G < D F
28 fveq2 F = 0 Y D F = D 0 Y
29 eqid 0 Y = 0 Y
30 2 1 29 deg1z R Ring D 0 Y = −∞
31 3 30 syl φ D 0 Y = −∞
32 28 31 sylan9eqr φ F = 0 Y D F = −∞
33 27 32 breqtrd φ F = 0 Y D G < −∞
34 33 ex φ F = 0 Y D G < −∞
35 34 necon3bd φ ¬ D G < −∞ F 0 Y
36 26 35 mpd φ F 0 Y
37 2 1 29 4 deg1nn0cl R Ring F B F 0 Y D F 0
38 3 6 36 37 syl3anc φ D F 0
39 eqid + R = + R
40 1 4 5 39 coe1addfv R Ring F B G B D F 0 coe 1 F + ˙ G D F = coe 1 F D F + R coe 1 G D F
41 3 6 7 38 40 syl31anc φ coe 1 F + ˙ G D F = coe 1 F D F + R coe 1 G D F
42 eqid 0 R = 0 R
43 eqid coe 1 G = coe 1 G
44 2 1 4 42 43 deg1lt G B D F 0 D G < D F coe 1 G D F = 0 R
45 7 38 8 44 syl3anc φ coe 1 G D F = 0 R
46 45 oveq2d φ coe 1 F D F + R coe 1 G D F = coe 1 F D F + R 0 R
47 ringgrp R Ring R Grp
48 3 47 syl φ R Grp
49 eqid coe 1 F = coe 1 F
50 eqid Base R = Base R
51 49 4 1 50 coe1f F B coe 1 F : 0 Base R
52 6 51 syl φ coe 1 F : 0 Base R
53 52 38 ffvelrnd φ coe 1 F D F Base R
54 50 39 42 grprid R Grp coe 1 F D F Base R coe 1 F D F + R 0 R = coe 1 F D F
55 48 53 54 syl2anc φ coe 1 F D F + R 0 R = coe 1 F D F
56 41 46 55 3eqtrd φ coe 1 F + ˙ G D F = coe 1 F D F
57 2 1 29 4 42 49 deg1ldg R Ring F B F 0 Y coe 1 F D F 0 R
58 3 6 36 57 syl3anc φ coe 1 F D F 0 R
59 56 58 eqnetrd φ coe 1 F + ˙ G D F 0 R
60 eqid coe 1 F + ˙ G = coe 1 F + ˙ G
61 2 1 4 42 60 deg1ge F + ˙ G B D F 0 coe 1 F + ˙ G D F 0 R D F D F + ˙ G
62 12 38 59 61 syl3anc φ D F D F + ˙ G
63 14 16 24 62 xrletrid φ D F + ˙ G = D F