Metamath Proof Explorer


Theorem deg1addle

Description: The degree of a sum is at most the maximum of the degrees of the factors. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1addle.y Y = Poly 1 R
deg1addle.d D = deg 1 R
deg1addle.r φ R Ring
deg1addle.b B = Base Y
deg1addle.p + ˙ = + Y
deg1addle.f φ F B
deg1addle.g φ G B
Assertion deg1addle φ D F + ˙ G if D F D G D G D F

Proof

Step Hyp Ref Expression
1 deg1addle.y Y = Poly 1 R
2 deg1addle.d D = deg 1 R
3 deg1addle.r φ R Ring
4 deg1addle.b B = Base Y
5 deg1addle.p + ˙ = + Y
6 deg1addle.f φ F B
7 deg1addle.g φ G B
8 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
9 2 deg1fval D = 1 𝑜 mDeg R
10 1on 1 𝑜 On
11 10 a1i φ 1 𝑜 On
12 eqid Base 1 𝑜 mPoly R = Base 1 𝑜 mPoly R
13 1 8 5 ply1plusg + ˙ = + 1 𝑜 mPoly R
14 1 4 ply1bascl2 F B F Base 1 𝑜 mPoly R
15 6 14 syl φ F Base 1 𝑜 mPoly R
16 1 4 ply1bascl2 G B G Base 1 𝑜 mPoly R
17 7 16 syl φ G Base 1 𝑜 mPoly R
18 8 9 11 3 12 13 15 17 mdegaddle φ D F + ˙ G if D F D G D G D F