Metamath Proof Explorer


Theorem deg1cl

Description: Sharp closure of univariate polynomial degree. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1xrf.d D = deg 1 R
deg1xrf.p P = Poly 1 R
deg1xrf.b B = Base P
Assertion deg1cl F B D F 0 −∞

Proof

Step Hyp Ref Expression
1 deg1xrf.d D = deg 1 R
2 deg1xrf.p P = Poly 1 R
3 deg1xrf.b B = Base P
4 1 deg1fval D = 1 𝑜 mDeg R
5 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
6 eqid PwSer 1 R = PwSer 1 R
7 2 6 3 ply1bas B = Base 1 𝑜 mPoly R
8 4 5 7 mdegcl F B D F 0 −∞