Metamath Proof Explorer


Theorem deg1fval

Description: Relate univariate polynomial degree to multivariate. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypothesis deg1fval.d D = deg 1 R
Assertion deg1fval D = 1 𝑜 mDeg R

Proof

Step Hyp Ref Expression
1 deg1fval.d D = deg 1 R
2 oveq2 r = R 1 𝑜 mDeg r = 1 𝑜 mDeg R
3 df-deg1 deg 1 = r V 1 𝑜 mDeg r
4 ovex 1 𝑜 mDeg R V
5 2 3 4 fvmpt R V deg 1 R = 1 𝑜 mDeg R
6 fvprc ¬ R V deg 1 R =
7 reldmmdeg Rel dom mDeg
8 7 ovprc2 ¬ R V 1 𝑜 mDeg R =
9 6 8 eqtr4d ¬ R V deg 1 R = 1 𝑜 mDeg R
10 5 9 pm2.61i deg 1 R = 1 𝑜 mDeg R
11 1 10 eqtri D = 1 𝑜 mDeg R