Metamath Proof Explorer


Theorem deg1fvi

Description: Univariate polynomial degree respects protection. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion deg1fvi deg 1 R = deg 1 I R

Proof

Step Hyp Ref Expression
1 fvi R V I R = R
2 1 fveq2d R V deg 1 I R = deg 1 R
3 eqid deg 1 = deg 1
4 eqid Poly 1 = Poly 1
5 00ply1bas = Base Poly 1
6 3 4 5 deg1xrf deg 1 : *
7 ffn deg 1 : * deg 1 Fn
8 6 7 ax-mp deg 1 Fn
9 fn0 deg 1 Fn deg 1 =
10 8 9 mpbi deg 1 =
11 fvprc ¬ R V I R =
12 11 fveq2d ¬ R V deg 1 I R = deg 1
13 fvprc ¬ R V deg 1 R =
14 10 12 13 3eqtr4a ¬ R V deg 1 I R = deg 1 R
15 2 14 pm2.61i deg 1 I R = deg 1 R
16 15 eqcomi deg 1 R = deg 1 I R