Metamath Proof Explorer


Theorem deg1ge

Description: Conversely, a nonzero coefficient sets a lower bound on the degree. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1leb.d D = deg 1 R
deg1leb.p P = Poly 1 R
deg1leb.b B = Base P
deg1leb.y 0 ˙ = 0 R
deg1leb.a A = coe 1 F
Assertion deg1ge F B G 0 A G 0 ˙ G D F

Proof

Step Hyp Ref Expression
1 deg1leb.d D = deg 1 R
2 deg1leb.p P = Poly 1 R
3 deg1leb.b B = Base P
4 deg1leb.y 0 ˙ = 0 R
5 deg1leb.a A = coe 1 F
6 1 2 3 deg1xrcl F B D F *
7 nn0re G 0 G
8 7 rexrd G 0 G *
9 xrltnle D F * G * D F < G ¬ G D F
10 6 8 9 syl2an F B G 0 D F < G ¬ G D F
11 1 2 3 4 5 deg1lt F B G 0 D F < G A G = 0 ˙
12 11 3expia F B G 0 D F < G A G = 0 ˙
13 10 12 sylbird F B G 0 ¬ G D F A G = 0 ˙
14 13 necon1ad F B G 0 A G 0 ˙ G D F
15 14 3impia F B G 0 A G 0 ˙ G D F