Metamath Proof Explorer


Theorem deg1invg

Description: The degree of the negated polynomial is the same as the original. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1addle.y Y = Poly 1 R
deg1addle.d D = deg 1 R
deg1addle.r φ R Ring
deg1invg.b B = Base Y
deg1invg.n N = inv g Y
deg1invg.f φ F B
Assertion deg1invg φ D N F = D F

Proof

Step Hyp Ref Expression
1 deg1addle.y Y = Poly 1 R
2 deg1addle.d D = deg 1 R
3 deg1addle.r φ R Ring
4 deg1invg.b B = Base Y
5 deg1invg.n N = inv g Y
6 deg1invg.f φ F B
7 1 ply1lmod R Ring Y LMod
8 3 7 syl φ Y LMod
9 1 ply1sca2 I R = Scalar Y
10 eqid Y = Y
11 eqid 1 I R = 1 I R
12 eqid inv g R = inv g R
13 12 grpinvfvi inv g R = inv g I R
14 4 5 9 10 11 13 lmodvneg1 Y LMod F B inv g R 1 I R Y F = N F
15 8 6 14 syl2anc φ inv g R 1 I R Y F = N F
16 15 fveq2d φ D inv g R 1 I R Y F = D N F
17 eqid RLReg R = RLReg R
18 fvi R Ring I R = R
19 3 18 syl φ I R = R
20 19 fveq2d φ 1 I R = 1 R
21 20 fveq2d φ inv g R 1 I R = inv g R 1 R
22 eqid Unit R = Unit R
23 17 22 unitrrg R Ring Unit R RLReg R
24 3 23 syl φ Unit R RLReg R
25 eqid 1 R = 1 R
26 22 25 1unit R Ring 1 R Unit R
27 22 12 unitnegcl R Ring 1 R Unit R inv g R 1 R Unit R
28 3 26 27 syl2anc2 φ inv g R 1 R Unit R
29 24 28 sseldd φ inv g R 1 R RLReg R
30 21 29 eqeltrd φ inv g R 1 I R RLReg R
31 1 2 3 4 17 10 30 6 deg1vsca φ D inv g R 1 I R Y F = D F
32 16 31 eqtr3d φ D N F = D F