Metamath Proof Explorer


Theorem deg1ldgdomn

Description: A nonzero univariate polynomial over a domain always has a nonzero-divisor leading coefficient. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1z.d D = deg 1 R
deg1z.p P = Poly 1 R
deg1z.z 0 ˙ = 0 P
deg1nn0cl.b B = Base P
deg1ldgdomn.e E = RLReg R
deg1ldgdomn.a A = coe 1 F
Assertion deg1ldgdomn R Domn F B F 0 ˙ A D F E

Proof

Step Hyp Ref Expression
1 deg1z.d D = deg 1 R
2 deg1z.p P = Poly 1 R
3 deg1z.z 0 ˙ = 0 P
4 deg1nn0cl.b B = Base P
5 deg1ldgdomn.e E = RLReg R
6 deg1ldgdomn.a A = coe 1 F
7 simp1 R Domn F B F 0 ˙ R Domn
8 eqid Base R = Base R
9 6 4 2 8 coe1f F B A : 0 Base R
10 9 3ad2ant2 R Domn F B F 0 ˙ A : 0 Base R
11 domnring R Domn R Ring
12 1 2 3 4 deg1nn0cl R Ring F B F 0 ˙ D F 0
13 11 12 syl3an1 R Domn F B F 0 ˙ D F 0
14 10 13 ffvelrnd R Domn F B F 0 ˙ A D F Base R
15 eqid 0 R = 0 R
16 1 2 3 4 15 6 deg1ldg R Ring F B F 0 ˙ A D F 0 R
17 11 16 syl3an1 R Domn F B F 0 ˙ A D F 0 R
18 8 5 15 domnrrg R Domn A D F Base R A D F 0 R A D F E
19 7 14 17 18 syl3anc R Domn F B F 0 ˙ A D F E