Metamath Proof Explorer


Theorem deg1le0

Description: A polynomial has nonpositive degree iff it is a constant. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses deg1le0.d D = deg 1 R
deg1le0.p P = Poly 1 R
deg1le0.b B = Base P
deg1le0.a A = algSc P
Assertion deg1le0 R Ring F B D F 0 F = A coe 1 F 0

Proof

Step Hyp Ref Expression
1 deg1le0.d D = deg 1 R
2 deg1le0.p P = Poly 1 R
3 deg1le0.b B = Base P
4 deg1le0.a A = algSc P
5 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
6 1 deg1fval D = 1 𝑜 mDeg R
7 1on 1 𝑜 On
8 7 a1i R Ring F B 1 𝑜 On
9 simpl R Ring F B R Ring
10 eqid PwSer 1 R = PwSer 1 R
11 2 10 3 ply1bas B = Base 1 𝑜 mPoly R
12 2 4 ply1ascl A = algSc 1 𝑜 mPoly R
13 simpr R Ring F B F B
14 5 6 8 9 11 12 13 mdegle0 R Ring F B D F 0 F = A F 1 𝑜 × 0
15 0nn0 0 0
16 eqid coe 1 F = coe 1 F
17 16 coe1fv F B 0 0 coe 1 F 0 = F 1 𝑜 × 0
18 13 15 17 sylancl R Ring F B coe 1 F 0 = F 1 𝑜 × 0
19 18 fveq2d R Ring F B A coe 1 F 0 = A F 1 𝑜 × 0
20 19 eqeq2d R Ring F B F = A coe 1 F 0 F = A F 1 𝑜 × 0
21 14 20 bitr4d R Ring F B D F 0 F = A coe 1 F 0