Step |
Hyp |
Ref |
Expression |
1 |
|
deg1sclb.d |
|
2 |
|
deg1sclb.p |
|
3 |
|
deg1sclb.z |
|
4 |
|
deg1sclb.1 |
|
5 |
|
deg1sclb.2 |
|
6 |
|
deg1sclb.3 |
|
7 |
|
deg1sclb.4 |
|
8 |
|
deg1sclb.5 |
|
9 |
|
eqid |
|
10 |
1 2 4 9
|
deg1le0 |
|
11 |
10
|
biimpa |
|
12 |
6 7 8 11
|
syl21anc |
|
13 |
12
|
adantr |
|
14 |
|
simpr |
|
15 |
13 14
|
eqtr3d |
|
16 |
6
|
adantr |
|
17 |
|
0nn0 |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
18 4 2 19
|
coe1fvalcl |
|
21 |
7 17 20
|
sylancl |
|
22 |
21
|
adantr |
|
23 |
|
simpr |
|
24 |
2 9 3 5 19
|
ply1scln0 |
|
25 |
16 22 23 24
|
syl3anc |
|
26 |
25
|
ex |
|
27 |
26
|
necon4d |
|
28 |
27
|
imp |
|
29 |
15 28
|
syldan |
|
30 |
12
|
adantr |
|
31 |
|
simpr |
|
32 |
31
|
fveq2d |
|
33 |
2 9 3 5 6
|
ply1ascl0 |
|
34 |
33
|
adantr |
|
35 |
30 32 34
|
3eqtrd |
|
36 |
29 35
|
impbida |
|