Metamath Proof Explorer


Theorem deg1le0eq0

Description: A polynomial with nonpositive degree is the zero polynomial iff its constant term is zero. Biconditional version of deg1scl . (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses deg1sclb.d D = deg 1 R
deg1sclb.p P = Poly 1 R
deg1sclb.z 0 ˙ = 0 R
deg1sclb.1 B = Base P
deg1sclb.2 O = 0 P
deg1sclb.3 φ R Ring
deg1sclb.4 φ F B
deg1sclb.5 φ D F 0
Assertion deg1le0eq0 φ F = O coe 1 F 0 = 0 ˙

Proof

Step Hyp Ref Expression
1 deg1sclb.d D = deg 1 R
2 deg1sclb.p P = Poly 1 R
3 deg1sclb.z 0 ˙ = 0 R
4 deg1sclb.1 B = Base P
5 deg1sclb.2 O = 0 P
6 deg1sclb.3 φ R Ring
7 deg1sclb.4 φ F B
8 deg1sclb.5 φ D F 0
9 eqid algSc P = algSc P
10 1 2 4 9 deg1le0 R Ring F B D F 0 F = algSc P coe 1 F 0
11 10 biimpa R Ring F B D F 0 F = algSc P coe 1 F 0
12 6 7 8 11 syl21anc φ F = algSc P coe 1 F 0
13 12 adantr φ F = O F = algSc P coe 1 F 0
14 simpr φ F = O F = O
15 13 14 eqtr3d φ F = O algSc P coe 1 F 0 = O
16 6 adantr φ coe 1 F 0 0 ˙ R Ring
17 0nn0 0 0
18 eqid coe 1 F = coe 1 F
19 eqid Base R = Base R
20 18 4 2 19 coe1fvalcl F B 0 0 coe 1 F 0 Base R
21 7 17 20 sylancl φ coe 1 F 0 Base R
22 21 adantr φ coe 1 F 0 0 ˙ coe 1 F 0 Base R
23 simpr φ coe 1 F 0 0 ˙ coe 1 F 0 0 ˙
24 2 9 3 5 19 ply1scln0 R Ring coe 1 F 0 Base R coe 1 F 0 0 ˙ algSc P coe 1 F 0 O
25 16 22 23 24 syl3anc φ coe 1 F 0 0 ˙ algSc P coe 1 F 0 O
26 25 ex φ coe 1 F 0 0 ˙ algSc P coe 1 F 0 O
27 26 necon4d φ algSc P coe 1 F 0 = O coe 1 F 0 = 0 ˙
28 27 imp φ algSc P coe 1 F 0 = O coe 1 F 0 = 0 ˙
29 15 28 syldan φ F = O coe 1 F 0 = 0 ˙
30 12 adantr φ coe 1 F 0 = 0 ˙ F = algSc P coe 1 F 0
31 simpr φ coe 1 F 0 = 0 ˙ coe 1 F 0 = 0 ˙
32 31 fveq2d φ coe 1 F 0 = 0 ˙ algSc P coe 1 F 0 = algSc P 0 ˙
33 2 9 3 5 6 ply1ascl0 φ algSc P 0 ˙ = O
34 33 adantr φ coe 1 F 0 = 0 ˙ algSc P 0 ˙ = O
35 30 32 34 3eqtrd φ coe 1 F 0 = 0 ˙ F = O
36 29 35 impbida φ F = O coe 1 F 0 = 0 ˙