Metamath Proof Explorer


Theorem deg1leb

Description: Property of being of limited degree. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1leb.d D = deg 1 R
deg1leb.p P = Poly 1 R
deg1leb.b B = Base P
deg1leb.y 0 ˙ = 0 R
deg1leb.a A = coe 1 F
Assertion deg1leb F B G * D F G x 0 G < x A x = 0 ˙

Proof

Step Hyp Ref Expression
1 deg1leb.d D = deg 1 R
2 deg1leb.p P = Poly 1 R
3 deg1leb.b B = Base P
4 deg1leb.y 0 ˙ = 0 R
5 deg1leb.a A = coe 1 F
6 1 deg1fval D = 1 𝑜 mDeg R
7 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
8 2 3 ply1bas B = Base 1 𝑜 mPoly R
9 psr1baslem 0 1 𝑜 = a 0 1 𝑜 | a -1 Fin
10 tdeglem2 b 0 1 𝑜 b = b 0 1 𝑜 fld b
11 6 7 8 4 9 10 mdegleb F B G * D F G y 0 1 𝑜 G < b 0 1 𝑜 b y F y = 0 ˙
12 df1o2 1 𝑜 =
13 nn0ex 0 V
14 0ex V
15 eqid b 0 1 𝑜 b = b 0 1 𝑜 b
16 12 13 14 15 mapsnf1o2 b 0 1 𝑜 b : 0 1 𝑜 1-1 onto 0
17 f1ofo b 0 1 𝑜 b : 0 1 𝑜 1-1 onto 0 b 0 1 𝑜 b : 0 1 𝑜 onto 0
18 breq2 b 0 1 𝑜 b y = x G < b 0 1 𝑜 b y G < x
19 fveqeq2 b 0 1 𝑜 b y = x A b 0 1 𝑜 b y = 0 ˙ A x = 0 ˙
20 18 19 imbi12d b 0 1 𝑜 b y = x G < b 0 1 𝑜 b y A b 0 1 𝑜 b y = 0 ˙ G < x A x = 0 ˙
21 20 cbvfo b 0 1 𝑜 b : 0 1 𝑜 onto 0 y 0 1 𝑜 G < b 0 1 𝑜 b y A b 0 1 𝑜 b y = 0 ˙ x 0 G < x A x = 0 ˙
22 16 17 21 mp2b y 0 1 𝑜 G < b 0 1 𝑜 b y A b 0 1 𝑜 b y = 0 ˙ x 0 G < x A x = 0 ˙
23 fveq1 b = y b = y
24 fvex y V
25 23 15 24 fvmpt y 0 1 𝑜 b 0 1 𝑜 b y = y
26 25 fveq2d y 0 1 𝑜 A b 0 1 𝑜 b y = A y
27 26 adantl F B G * y 0 1 𝑜 A b 0 1 𝑜 b y = A y
28 5 fvcoe1 F B y 0 1 𝑜 F y = A y
29 28 adantlr F B G * y 0 1 𝑜 F y = A y
30 27 29 eqtr4d F B G * y 0 1 𝑜 A b 0 1 𝑜 b y = F y
31 30 eqeq1d F B G * y 0 1 𝑜 A b 0 1 𝑜 b y = 0 ˙ F y = 0 ˙
32 31 imbi2d F B G * y 0 1 𝑜 G < b 0 1 𝑜 b y A b 0 1 𝑜 b y = 0 ˙ G < b 0 1 𝑜 b y F y = 0 ˙
33 32 ralbidva F B G * y 0 1 𝑜 G < b 0 1 𝑜 b y A b 0 1 𝑜 b y = 0 ˙ y 0 1 𝑜 G < b 0 1 𝑜 b y F y = 0 ˙
34 22 33 bitr3id F B G * x 0 G < x A x = 0 ˙ y 0 1 𝑜 G < b 0 1 𝑜 b y F y = 0 ˙
35 11 34 bitr4d F B G * D F G x 0 G < x A x = 0 ˙