Metamath Proof Explorer


Theorem deg1lt

Description: If the degree of a univariate polynomial is less than some index, then that coefficient must be zero. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1leb.d D = deg 1 R
deg1leb.p P = Poly 1 R
deg1leb.b B = Base P
deg1leb.y 0 ˙ = 0 R
deg1leb.a A = coe 1 F
Assertion deg1lt F B G 0 D F < G A G = 0 ˙

Proof

Step Hyp Ref Expression
1 deg1leb.d D = deg 1 R
2 deg1leb.p P = Poly 1 R
3 deg1leb.b B = Base P
4 deg1leb.y 0 ˙ = 0 R
5 deg1leb.a A = coe 1 F
6 simp3 F B G 0 D F < G D F < G
7 breq2 x = G D F < x D F < G
8 fveqeq2 x = G A x = 0 ˙ A G = 0 ˙
9 7 8 imbi12d x = G D F < x A x = 0 ˙ D F < G A G = 0 ˙
10 1 2 3 deg1xrcl F B D F *
11 10 3ad2ant1 F B G 0 D F < G D F *
12 11 xrleidd F B G 0 D F < G D F D F
13 simp1 F B G 0 D F < G F B
14 1 2 3 4 5 deg1leb F B D F * D F D F x 0 D F < x A x = 0 ˙
15 13 10 14 syl2anc2 F B G 0 D F < G D F D F x 0 D F < x A x = 0 ˙
16 12 15 mpbid F B G 0 D F < G x 0 D F < x A x = 0 ˙
17 simp2 F B G 0 D F < G G 0
18 9 16 17 rspcdva F B G 0 D F < G D F < G A G = 0 ˙
19 6 18 mpd F B G 0 D F < G A G = 0 ˙