Metamath Proof Explorer


Theorem deg1lt0

Description: A polynomial is zero iff it has negative degree. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses deg1z.d D = deg 1 R
deg1z.p P = Poly 1 R
deg1z.z 0 ˙ = 0 P
deg1nn0cl.b B = Base P
Assertion deg1lt0 R Ring F B D F < 0 F = 0 ˙

Proof

Step Hyp Ref Expression
1 deg1z.d D = deg 1 R
2 deg1z.p P = Poly 1 R
3 deg1z.z 0 ˙ = 0 P
4 deg1nn0cl.b B = Base P
5 1 2 3 4 deg1nn0cl R Ring F B F 0 ˙ D F 0
6 nn0nlt0 D F 0 ¬ D F < 0
7 5 6 syl R Ring F B F 0 ˙ ¬ D F < 0
8 7 3expia R Ring F B F 0 ˙ ¬ D F < 0
9 8 necon4ad R Ring F B D F < 0 F = 0 ˙
10 1 2 3 deg1z R Ring D 0 ˙ = −∞
11 mnflt0 −∞ < 0
12 10 11 eqbrtrdi R Ring D 0 ˙ < 0
13 12 adantr R Ring F B D 0 ˙ < 0
14 fveq2 F = 0 ˙ D F = D 0 ˙
15 14 breq1d F = 0 ˙ D F < 0 D 0 ˙ < 0
16 13 15 syl5ibrcom R Ring F B F = 0 ˙ D F < 0
17 9 16 impbid R Ring F B D F < 0 F = 0 ˙