Metamath Proof Explorer


Theorem deg1mul

Description: Degree of multiplication of two nonzero polynomials in a domain. (Contributed by metakunt, 6-May-2025)

Ref Expression
Hypotheses deg1mul.1 D = deg 1 R
deg1mul.2 P = Poly 1 R
deg1mul.3 B = Base P
deg1mul.4 · ˙ = P
deg1mul.5 0 ˙ = 0 P
deg1mul.6 φ R Domn
deg1mul.7 φ F B
deg1mul.8 φ F 0 ˙
deg1mul.9 φ G B
deg1mul.10 φ G 0 ˙
Assertion deg1mul φ D F · ˙ G = D F + D G

Proof

Step Hyp Ref Expression
1 deg1mul.1 D = deg 1 R
2 deg1mul.2 P = Poly 1 R
3 deg1mul.3 B = Base P
4 deg1mul.4 · ˙ = P
5 deg1mul.5 0 ˙ = 0 P
6 deg1mul.6 φ R Domn
7 deg1mul.7 φ F B
8 deg1mul.8 φ F 0 ˙
9 deg1mul.9 φ G B
10 deg1mul.10 φ G 0 ˙
11 eqid RLReg R = RLReg R
12 domnring R Domn R Ring
13 6 12 syl φ R Ring
14 1 2 5 3 deg1nn0cl R Ring F B F 0 ˙ D F 0
15 13 7 8 14 syl3anc φ D F 0
16 eqid coe 1 F = coe 1 F
17 eqid Base R = Base R
18 16 3 2 17 coe1fvalcl F B D F 0 coe 1 F D F Base R
19 7 15 18 syl2anc φ coe 1 F D F Base R
20 eqid 0 R = 0 R
21 1 2 5 3 20 16 deg1ldg R Ring F B F 0 ˙ coe 1 F D F 0 R
22 13 7 8 21 syl3anc φ coe 1 F D F 0 R
23 17 11 20 domnrrg R Domn coe 1 F D F Base R coe 1 F D F 0 R coe 1 F D F RLReg R
24 6 19 22 23 syl3anc φ coe 1 F D F RLReg R
25 1 2 11 3 4 5 13 7 8 24 9 10 deg1mul2 φ D F · ˙ G = D F + D G