Metamath Proof Explorer


Theorem deg1mul2

Description: Degree of multiplication of two nonzero polynomials when the first leads with a nonzero-divisor coefficient. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1mul2.d D = deg 1 R
deg1mul2.p P = Poly 1 R
deg1mul2.e E = RLReg R
deg1mul2.b B = Base P
deg1mul2.t · ˙ = P
deg1mul2.z 0 ˙ = 0 P
deg1mul2.r φ R Ring
deg1mul2.fb φ F B
deg1mul2.fz φ F 0 ˙
deg1mul2.fc φ coe 1 F D F E
deg1mul2.gb φ G B
deg1mul2.gz φ G 0 ˙
Assertion deg1mul2 φ D F · ˙ G = D F + D G

Proof

Step Hyp Ref Expression
1 deg1mul2.d D = deg 1 R
2 deg1mul2.p P = Poly 1 R
3 deg1mul2.e E = RLReg R
4 deg1mul2.b B = Base P
5 deg1mul2.t · ˙ = P
6 deg1mul2.z 0 ˙ = 0 P
7 deg1mul2.r φ R Ring
8 deg1mul2.fb φ F B
9 deg1mul2.fz φ F 0 ˙
10 deg1mul2.fc φ coe 1 F D F E
11 deg1mul2.gb φ G B
12 deg1mul2.gz φ G 0 ˙
13 2 ply1ring R Ring P Ring
14 7 13 syl φ P Ring
15 4 5 ringcl P Ring F B G B F · ˙ G B
16 14 8 11 15 syl3anc φ F · ˙ G B
17 1 2 4 deg1xrcl F · ˙ G B D F · ˙ G *
18 16 17 syl φ D F · ˙ G *
19 1 2 6 4 deg1nn0cl R Ring F B F 0 ˙ D F 0
20 7 8 9 19 syl3anc φ D F 0
21 1 2 6 4 deg1nn0cl R Ring G B G 0 ˙ D G 0
22 7 11 12 21 syl3anc φ D G 0
23 20 22 nn0addcld φ D F + D G 0
24 23 nn0red φ D F + D G
25 24 rexrd φ D F + D G *
26 20 nn0red φ D F
27 26 leidd φ D F D F
28 22 nn0red φ D G
29 28 leidd φ D G D G
30 2 1 7 4 5 8 11 20 22 27 29 deg1mulle2 φ D F · ˙ G D F + D G
31 eqid R = R
32 2 5 31 4 1 6 7 8 9 11 12 coe1mul4 φ coe 1 F · ˙ G D F + D G = coe 1 F D F R coe 1 G D G
33 eqid 0 R = 0 R
34 eqid coe 1 G = coe 1 G
35 1 2 6 4 33 34 deg1ldg R Ring G B G 0 ˙ coe 1 G D G 0 R
36 7 11 12 35 syl3anc φ coe 1 G D G 0 R
37 eqid Base R = Base R
38 34 4 2 37 coe1f G B coe 1 G : 0 Base R
39 11 38 syl φ coe 1 G : 0 Base R
40 39 22 ffvelrnd φ coe 1 G D G Base R
41 3 37 31 33 rrgeq0i coe 1 F D F E coe 1 G D G Base R coe 1 F D F R coe 1 G D G = 0 R coe 1 G D G = 0 R
42 10 40 41 syl2anc φ coe 1 F D F R coe 1 G D G = 0 R coe 1 G D G = 0 R
43 42 necon3d φ coe 1 G D G 0 R coe 1 F D F R coe 1 G D G 0 R
44 36 43 mpd φ coe 1 F D F R coe 1 G D G 0 R
45 32 44 eqnetrd φ coe 1 F · ˙ G D F + D G 0 R
46 eqid coe 1 F · ˙ G = coe 1 F · ˙ G
47 1 2 4 33 46 deg1ge F · ˙ G B D F + D G 0 coe 1 F · ˙ G D F + D G 0 R D F + D G D F · ˙ G
48 16 23 45 47 syl3anc φ D F + D G D F · ˙ G
49 18 25 30 48 xrletrid φ D F · ˙ G = D F + D G