Step |
Hyp |
Ref |
Expression |
1 |
|
deg1mul2.d |
|
2 |
|
deg1mul2.p |
|
3 |
|
deg1mul2.e |
|
4 |
|
deg1mul2.b |
|
5 |
|
deg1mul2.t |
|
6 |
|
deg1mul2.z |
|
7 |
|
deg1mul2.r |
|
8 |
|
deg1mul2.fb |
|
9 |
|
deg1mul2.fz |
|
10 |
|
deg1mul2.fc |
|
11 |
|
deg1mul2.gb |
|
12 |
|
deg1mul2.gz |
|
13 |
2
|
ply1ring |
|
14 |
7 13
|
syl |
|
15 |
4 5
|
ringcl |
|
16 |
14 8 11 15
|
syl3anc |
|
17 |
1 2 4
|
deg1xrcl |
|
18 |
16 17
|
syl |
|
19 |
1 2 6 4
|
deg1nn0cl |
|
20 |
7 8 9 19
|
syl3anc |
|
21 |
1 2 6 4
|
deg1nn0cl |
|
22 |
7 11 12 21
|
syl3anc |
|
23 |
20 22
|
nn0addcld |
|
24 |
23
|
nn0red |
|
25 |
24
|
rexrd |
|
26 |
20
|
nn0red |
|
27 |
26
|
leidd |
|
28 |
22
|
nn0red |
|
29 |
28
|
leidd |
|
30 |
2 1 7 4 5 8 11 20 22 27 29
|
deg1mulle2 |
|
31 |
|
eqid |
|
32 |
2 5 31 4 1 6 7 8 9 11 12
|
coe1mul4 |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
1 2 6 4 33 34
|
deg1ldg |
|
36 |
7 11 12 35
|
syl3anc |
|
37 |
|
eqid |
|
38 |
34 4 2 37
|
coe1f |
|
39 |
11 38
|
syl |
|
40 |
39 22
|
ffvelrnd |
|
41 |
3 37 31 33
|
rrgeq0i |
|
42 |
10 40 41
|
syl2anc |
|
43 |
42
|
necon3d |
|
44 |
36 43
|
mpd |
|
45 |
32 44
|
eqnetrd |
|
46 |
|
eqid |
|
47 |
1 2 4 33 46
|
deg1ge |
|
48 |
16 23 45 47
|
syl3anc |
|
49 |
18 25 30 48
|
xrletrid |
|