Metamath Proof Explorer


Theorem deg1mul3

Description: Degree of multiplication of a polynomial on the left by a nonzero-dividing scalar. (Contributed by Stefan O'Rear, 29-Mar-2015) (Proof shortened by AV, 25-Jul-2019)

Ref Expression
Hypotheses deg1mul3.d D = deg 1 R
deg1mul3.p P = Poly 1 R
deg1mul3.e E = RLReg R
deg1mul3.b B = Base P
deg1mul3.t · ˙ = P
deg1mul3.a A = algSc P
Assertion deg1mul3 R Ring F E G B D A F · ˙ G = D G

Proof

Step Hyp Ref Expression
1 deg1mul3.d D = deg 1 R
2 deg1mul3.p P = Poly 1 R
3 deg1mul3.e E = RLReg R
4 deg1mul3.b B = Base P
5 deg1mul3.t · ˙ = P
6 deg1mul3.a A = algSc P
7 eqid Base R = Base R
8 3 7 rrgss E Base R
9 8 sseli F E F Base R
10 eqid R = R
11 2 4 7 6 5 10 coe1sclmul R Ring F Base R G B coe 1 A F · ˙ G = 0 × F R f coe 1 G
12 9 11 syl3an2 R Ring F E G B coe 1 A F · ˙ G = 0 × F R f coe 1 G
13 12 oveq1d R Ring F E G B coe 1 A F · ˙ G supp 0 R = 0 × F R f coe 1 G supp 0 R
14 eqid 0 R = 0 R
15 nn0ex 0 V
16 15 a1i R Ring F E G B 0 V
17 simp1 R Ring F E G B R Ring
18 simp2 R Ring F E G B F E
19 eqid coe 1 G = coe 1 G
20 19 4 2 7 coe1f G B coe 1 G : 0 Base R
21 20 3ad2ant3 R Ring F E G B coe 1 G : 0 Base R
22 3 7 10 14 16 17 18 21 rrgsupp R Ring F E G B 0 × F R f coe 1 G supp 0 R = coe 1 G supp 0 R
23 13 22 eqtrd R Ring F E G B coe 1 A F · ˙ G supp 0 R = coe 1 G supp 0 R
24 23 supeq1d R Ring F E G B sup coe 1 A F · ˙ G supp 0 R * < = sup coe 1 G supp 0 R * <
25 2 ply1ring R Ring P Ring
26 25 3ad2ant1 R Ring F E G B P Ring
27 2 6 7 4 ply1sclf R Ring A : Base R B
28 27 3ad2ant1 R Ring F E G B A : Base R B
29 9 3ad2ant2 R Ring F E G B F Base R
30 28 29 ffvelrnd R Ring F E G B A F B
31 simp3 R Ring F E G B G B
32 4 5 ringcl P Ring A F B G B A F · ˙ G B
33 26 30 31 32 syl3anc R Ring F E G B A F · ˙ G B
34 eqid coe 1 A F · ˙ G = coe 1 A F · ˙ G
35 1 2 4 14 34 deg1val A F · ˙ G B D A F · ˙ G = sup coe 1 A F · ˙ G supp 0 R * <
36 33 35 syl R Ring F E G B D A F · ˙ G = sup coe 1 A F · ˙ G supp 0 R * <
37 1 2 4 14 19 deg1val G B D G = sup coe 1 G supp 0 R * <
38 37 3ad2ant3 R Ring F E G B D G = sup coe 1 G supp 0 R * <
39 24 36 38 3eqtr4d R Ring F E G B D A F · ˙ G = D G