Metamath Proof Explorer


Theorem deg1mul3le

Description: Degree of multiplication of a polynomial on the left by a scalar. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses deg1mul3le.d D = deg 1 R
deg1mul3le.p P = Poly 1 R
deg1mul3le.k K = Base R
deg1mul3le.b B = Base P
deg1mul3le.t · ˙ = P
deg1mul3le.a A = algSc P
Assertion deg1mul3le R Ring F K G B D A F · ˙ G D G

Proof

Step Hyp Ref Expression
1 deg1mul3le.d D = deg 1 R
2 deg1mul3le.p P = Poly 1 R
3 deg1mul3le.k K = Base R
4 deg1mul3le.b B = Base P
5 deg1mul3le.t · ˙ = P
6 deg1mul3le.a A = algSc P
7 2 ply1ring R Ring P Ring
8 7 3ad2ant1 R Ring F K G B P Ring
9 2 6 3 4 ply1sclf R Ring A : K B
10 9 3ad2ant1 R Ring F K G B A : K B
11 simp2 R Ring F K G B F K
12 10 11 ffvelrnd R Ring F K G B A F B
13 simp3 R Ring F K G B G B
14 4 5 ringcl P Ring A F B G B A F · ˙ G B
15 8 12 13 14 syl3anc R Ring F K G B A F · ˙ G B
16 eqid coe 1 A F · ˙ G = coe 1 A F · ˙ G
17 16 4 2 3 coe1f A F · ˙ G B coe 1 A F · ˙ G : 0 K
18 15 17 syl R Ring F K G B coe 1 A F · ˙ G : 0 K
19 eldifi a 0 supp 0 R coe 1 G a 0
20 simpl1 R Ring F K G B a 0 R Ring
21 simpl2 R Ring F K G B a 0 F K
22 simpl3 R Ring F K G B a 0 G B
23 simpr R Ring F K G B a 0 a 0
24 eqid R = R
25 2 4 3 6 5 24 coe1sclmulfv R Ring F K G B a 0 coe 1 A F · ˙ G a = F R coe 1 G a
26 20 21 22 23 25 syl121anc R Ring F K G B a 0 coe 1 A F · ˙ G a = F R coe 1 G a
27 19 26 sylan2 R Ring F K G B a 0 supp 0 R coe 1 G coe 1 A F · ˙ G a = F R coe 1 G a
28 eqid coe 1 G = coe 1 G
29 28 4 2 3 coe1f G B coe 1 G : 0 K
30 29 3ad2ant3 R Ring F K G B coe 1 G : 0 K
31 ssidd R Ring F K G B coe 1 G supp 0 R coe 1 G supp 0 R
32 nn0ex 0 V
33 32 a1i R Ring F K G B 0 V
34 fvexd R Ring F K G B 0 R V
35 30 31 33 34 suppssr R Ring F K G B a 0 supp 0 R coe 1 G coe 1 G a = 0 R
36 35 oveq2d R Ring F K G B a 0 supp 0 R coe 1 G F R coe 1 G a = F R 0 R
37 eqid 0 R = 0 R
38 3 24 37 ringrz R Ring F K F R 0 R = 0 R
39 38 3adant3 R Ring F K G B F R 0 R = 0 R
40 39 adantr R Ring F K G B a 0 supp 0 R coe 1 G F R 0 R = 0 R
41 27 36 40 3eqtrd R Ring F K G B a 0 supp 0 R coe 1 G coe 1 A F · ˙ G a = 0 R
42 18 41 suppss R Ring F K G B coe 1 A F · ˙ G supp 0 R coe 1 G supp 0 R
43 suppssdm coe 1 G supp 0 R dom coe 1 G
44 43 30 fssdm R Ring F K G B coe 1 G supp 0 R 0
45 nn0ssre 0
46 ressxr *
47 45 46 sstri 0 *
48 44 47 sstrdi R Ring F K G B coe 1 G supp 0 R *
49 supxrss coe 1 A F · ˙ G supp 0 R coe 1 G supp 0 R coe 1 G supp 0 R * sup coe 1 A F · ˙ G supp 0 R * < sup coe 1 G supp 0 R * <
50 42 48 49 syl2anc R Ring F K G B sup coe 1 A F · ˙ G supp 0 R * < sup coe 1 G supp 0 R * <
51 1 2 4 37 16 deg1val A F · ˙ G B D A F · ˙ G = sup coe 1 A F · ˙ G supp 0 R * <
52 15 51 syl R Ring F K G B D A F · ˙ G = sup coe 1 A F · ˙ G supp 0 R * <
53 1 2 4 37 28 deg1val G B D G = sup coe 1 G supp 0 R * <
54 53 3ad2ant3 R Ring F K G B D G = sup coe 1 G supp 0 R * <
55 50 52 54 3brtr4d R Ring F K G B D A F · ˙ G D G