Metamath Proof Explorer


Theorem deg1mulle2

Description: Produce a bound on the product of two univariate polynomials given bounds on the factors. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1addle.y Y = Poly 1 R
deg1addle.d D = deg 1 R
deg1addle.r φ R Ring
deg1mulle2.b B = Base Y
deg1mulle2.t · ˙ = Y
deg1mulle2.f φ F B
deg1mulle2.g φ G B
deg1mulle2.j1 φ J 0
deg1mulle2.k1 φ K 0
deg1mulle2.j2 φ D F J
deg1mulle2.k2 φ D G K
Assertion deg1mulle2 φ D F · ˙ G J + K

Proof

Step Hyp Ref Expression
1 deg1addle.y Y = Poly 1 R
2 deg1addle.d D = deg 1 R
3 deg1addle.r φ R Ring
4 deg1mulle2.b B = Base Y
5 deg1mulle2.t · ˙ = Y
6 deg1mulle2.f φ F B
7 deg1mulle2.g φ G B
8 deg1mulle2.j1 φ J 0
9 deg1mulle2.k1 φ K 0
10 deg1mulle2.j2 φ D F J
11 deg1mulle2.k2 φ D G K
12 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
13 2 deg1fval D = 1 𝑜 mDeg R
14 1on 1 𝑜 On
15 14 a1i φ 1 𝑜 On
16 eqid PwSer 1 R = PwSer 1 R
17 1 16 4 ply1bas B = Base 1 𝑜 mPoly R
18 1 12 5 ply1mulr · ˙ = 1 𝑜 mPoly R
19 12 13 15 3 17 18 6 7 8 9 10 11 mdegmulle2 φ D F · ˙ G J + K