Metamath Proof Explorer


Theorem deg1n0ima

Description: Degree image of a set of polynomials which does not include zero. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1z.d D = deg 1 R
deg1z.p P = Poly 1 R
deg1z.z 0 ˙ = 0 P
deg1nn0cl.b B = Base P
Assertion deg1n0ima R Ring D B 0 ˙ 0

Proof

Step Hyp Ref Expression
1 deg1z.d D = deg 1 R
2 deg1z.p P = Poly 1 R
3 deg1z.z 0 ˙ = 0 P
4 deg1nn0cl.b B = Base P
5 simpl R Ring x B 0 ˙ R Ring
6 eldifi x B 0 ˙ x B
7 6 adantl R Ring x B 0 ˙ x B
8 eldifsni x B 0 ˙ x 0 ˙
9 8 adantl R Ring x B 0 ˙ x 0 ˙
10 1 2 3 4 deg1nn0cl R Ring x B x 0 ˙ D x 0
11 5 7 9 10 syl3anc R Ring x B 0 ˙ D x 0
12 11 ralrimiva R Ring x B 0 ˙ D x 0
13 1 2 4 deg1xrf D : B *
14 ffun D : B * Fun D
15 13 14 ax-mp Fun D
16 difss B 0 ˙ B
17 13 fdmi dom D = B
18 16 17 sseqtrri B 0 ˙ dom D
19 funimass4 Fun D B 0 ˙ dom D D B 0 ˙ 0 x B 0 ˙ D x 0
20 15 18 19 mp2an D B 0 ˙ 0 x B 0 ˙ D x 0
21 12 20 sylibr R Ring D B 0 ˙ 0