Metamath Proof Explorer


Theorem deg1nn0cl

Description: Degree of a nonzero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015) (Revised by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses deg1z.d D = deg 1 R
deg1z.p P = Poly 1 R
deg1z.z 0 ˙ = 0 P
deg1nn0cl.b B = Base P
Assertion deg1nn0cl R Ring F B F 0 ˙ D F 0

Proof

Step Hyp Ref Expression
1 deg1z.d D = deg 1 R
2 deg1z.p P = Poly 1 R
3 deg1z.z 0 ˙ = 0 P
4 deg1nn0cl.b B = Base P
5 1 deg1fval D = 1 𝑜 mDeg R
6 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
7 6 2 3 ply1mpl0 0 ˙ = 0 1 𝑜 mPoly R
8 eqid PwSer 1 R = PwSer 1 R
9 2 8 4 ply1bas B = Base 1 𝑜 mPoly R
10 5 6 7 9 mdegnn0cl R Ring F B F 0 ˙ D F 0