Metamath Proof Explorer


Theorem deg1nn0clb

Description: A polynomial is nonzero iff it has definite degree. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1z.d D = deg 1 R
deg1z.p P = Poly 1 R
deg1z.z 0 ˙ = 0 P
deg1nn0cl.b B = Base P
Assertion deg1nn0clb R Ring F B F 0 ˙ D F 0

Proof

Step Hyp Ref Expression
1 deg1z.d D = deg 1 R
2 deg1z.p P = Poly 1 R
3 deg1z.z 0 ˙ = 0 P
4 deg1nn0cl.b B = Base P
5 1 2 3 4 deg1nn0cl R Ring F B F 0 ˙ D F 0
6 5 3expia R Ring F B F 0 ˙ D F 0
7 mnfnre −∞
8 7 neli ¬ −∞
9 nn0re −∞ 0 −∞
10 8 9 mto ¬ −∞ 0
11 1 2 3 deg1z R Ring D 0 ˙ = −∞
12 11 adantr R Ring F B D 0 ˙ = −∞
13 12 eleq1d R Ring F B D 0 ˙ 0 −∞ 0
14 10 13 mtbiri R Ring F B ¬ D 0 ˙ 0
15 fveq2 F = 0 ˙ D F = D 0 ˙
16 15 eleq1d F = 0 ˙ D F 0 D 0 ˙ 0
17 16 notbid F = 0 ˙ ¬ D F 0 ¬ D 0 ˙ 0
18 14 17 syl5ibrcom R Ring F B F = 0 ˙ ¬ D F 0
19 18 necon2ad R Ring F B D F 0 F 0 ˙
20 6 19 impbid R Ring F B F 0 ˙ D F 0