Metamath Proof Explorer


Theorem deg1propd

Description: Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1propd.b1 φ B = Base R
deg1propd.b2 φ B = Base S
deg1propd.p φ x B y B x + R y = x + S y
Assertion deg1propd φ deg 1 R = deg 1 S

Proof

Step Hyp Ref Expression
1 deg1propd.b1 φ B = Base R
2 deg1propd.b2 φ B = Base S
3 deg1propd.p φ x B y B x + R y = x + S y
4 1 2 3 mdegpropd φ 1 𝑜 mDeg R = 1 𝑜 mDeg S
5 eqid deg 1 R = deg 1 R
6 5 deg1fval deg 1 R = 1 𝑜 mDeg R
7 eqid deg 1 S = deg 1 S
8 7 deg1fval deg 1 S = 1 𝑜 mDeg S
9 4 6 8 3eqtr4g φ deg 1 R = deg 1 S