Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Polynomial degrees
deg1propd
Next ⟩
deg1z
Metamath Proof Explorer
Ascii
Unicode
Theorem
deg1propd
Description:
Property deduction for polynomial degree.
(Contributed by
Stefan O'Rear
, 28-Mar-2015)
Ref
Expression
Hypotheses
deg1propd.b1
⊢
φ
→
B
=
Base
R
deg1propd.b2
⊢
φ
→
B
=
Base
S
deg1propd.p
⊢
φ
∧
x
∈
B
∧
y
∈
B
→
x
+
R
y
=
x
+
S
y
Assertion
deg1propd
⊢
φ
→
deg
1
⁡
R
=
deg
1
⁡
S
Proof
Step
Hyp
Ref
Expression
1
deg1propd.b1
⊢
φ
→
B
=
Base
R
2
deg1propd.b2
⊢
φ
→
B
=
Base
S
3
deg1propd.p
⊢
φ
∧
x
∈
B
∧
y
∈
B
→
x
+
R
y
=
x
+
S
y
4
1
2
3
mdegpropd
⊢
φ
→
1
𝑜
mDeg
R
=
1
𝑜
mDeg
S
5
eqid
⊢
deg
1
⁡
R
=
deg
1
⁡
R
6
5
deg1fval
⊢
deg
1
⁡
R
=
1
𝑜
mDeg
R
7
eqid
⊢
deg
1
⁡
S
=
deg
1
⁡
S
8
7
deg1fval
⊢
deg
1
⁡
S
=
1
𝑜
mDeg
S
9
4
6
8
3eqtr4g
⊢
φ
→
deg
1
⁡
R
=
deg
1
⁡
S