Metamath Proof Explorer


Theorem deg1pw

Description: Exact degree of a variable power over a nontrivial ring. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses deg1pw.d D = deg 1 R
deg1pw.p P = Poly 1 R
deg1pw.x X = var 1 R
deg1pw.n N = mulGrp P
deg1pw.e × ˙ = N
Assertion deg1pw R NzRing F 0 D F × ˙ X = F

Proof

Step Hyp Ref Expression
1 deg1pw.d D = deg 1 R
2 deg1pw.p P = Poly 1 R
3 deg1pw.x X = var 1 R
4 deg1pw.n N = mulGrp P
5 deg1pw.e × ˙ = N
6 2 ply1sca R NzRing R = Scalar P
7 6 adantr R NzRing F 0 R = Scalar P
8 7 fveq2d R NzRing F 0 1 R = 1 Scalar P
9 8 oveq1d R NzRing F 0 1 R P F × ˙ X = 1 Scalar P P F × ˙ X
10 nzrring R NzRing R Ring
11 10 adantr R NzRing F 0 R Ring
12 2 ply1lmod R Ring P LMod
13 11 12 syl R NzRing F 0 P LMod
14 2 ply1ring R Ring P Ring
15 4 ringmgp P Ring N Mnd
16 11 14 15 3syl R NzRing F 0 N Mnd
17 simpr R NzRing F 0 F 0
18 eqid Base P = Base P
19 3 2 18 vr1cl R Ring X Base P
20 11 19 syl R NzRing F 0 X Base P
21 4 18 mgpbas Base P = Base N
22 21 5 mulgnn0cl N Mnd F 0 X Base P F × ˙ X Base P
23 16 17 20 22 syl3anc R NzRing F 0 F × ˙ X Base P
24 eqid Scalar P = Scalar P
25 eqid P = P
26 eqid 1 Scalar P = 1 Scalar P
27 18 24 25 26 lmodvs1 P LMod F × ˙ X Base P 1 Scalar P P F × ˙ X = F × ˙ X
28 13 23 27 syl2anc R NzRing F 0 1 Scalar P P F × ˙ X = F × ˙ X
29 9 28 eqtrd R NzRing F 0 1 R P F × ˙ X = F × ˙ X
30 29 fveq2d R NzRing F 0 D 1 R P F × ˙ X = D F × ˙ X
31 eqid Base R = Base R
32 eqid 1 R = 1 R
33 31 32 ringidcl R Ring 1 R Base R
34 11 33 syl R NzRing F 0 1 R Base R
35 eqid 0 R = 0 R
36 32 35 nzrnz R NzRing 1 R 0 R
37 36 adantr R NzRing F 0 1 R 0 R
38 1 31 2 3 25 4 5 35 deg1tm R Ring 1 R Base R 1 R 0 R F 0 D 1 R P F × ˙ X = F
39 11 34 37 17 38 syl121anc R NzRing F 0 D 1 R P F × ˙ X = F
40 30 39 eqtr3d R NzRing F 0 D F × ˙ X = F