Metamath Proof Explorer


Theorem deg1pwle

Description: Limiting degree of a variable power. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses deg1pw.d D = deg 1 R
deg1pw.p P = Poly 1 R
deg1pw.x X = var 1 R
deg1pw.n N = mulGrp P
deg1pw.e × ˙ = N
Assertion deg1pwle R Ring F 0 D F × ˙ X F

Proof

Step Hyp Ref Expression
1 deg1pw.d D = deg 1 R
2 deg1pw.p P = Poly 1 R
3 deg1pw.x X = var 1 R
4 deg1pw.n N = mulGrp P
5 deg1pw.e × ˙ = N
6 2 ply1lmod R Ring P LMod
7 eqid Base P = Base P
8 2 3 4 5 7 ply1moncl R Ring F 0 F × ˙ X Base P
9 eqid Scalar P = Scalar P
10 eqid P = P
11 eqid 1 Scalar P = 1 Scalar P
12 7 9 10 11 lmodvs1 P LMod F × ˙ X Base P 1 Scalar P P F × ˙ X = F × ˙ X
13 6 8 12 syl2an2r R Ring F 0 1 Scalar P P F × ˙ X = F × ˙ X
14 13 fveq2d R Ring F 0 D 1 Scalar P P F × ˙ X = D F × ˙ X
15 simpl R Ring F 0 R Ring
16 2 ply1sca R Ring R = Scalar P
17 16 fveq2d R Ring 1 R = 1 Scalar P
18 eqid Base R = Base R
19 eqid 1 R = 1 R
20 18 19 ringidcl R Ring 1 R Base R
21 17 20 eqeltrrd R Ring 1 Scalar P Base R
22 21 adantr R Ring F 0 1 Scalar P Base R
23 simpr R Ring F 0 F 0
24 1 18 2 3 10 4 5 deg1tmle R Ring 1 Scalar P Base R F 0 D 1 Scalar P P F × ˙ X F
25 15 22 23 24 syl3anc R Ring F 0 D 1 Scalar P P F × ˙ X F
26 14 25 eqbrtrrd R Ring F 0 D F × ˙ X F