Metamath Proof Explorer


Theorem deg1scl

Description: A nonzero scalar polynomial has zero degree. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses deg1sclle.d D = deg 1 R
deg1sclle.p P = Poly 1 R
deg1sclle.k K = Base R
deg1sclle.a A = algSc P
deg1scl.z 0 ˙ = 0 R
Assertion deg1scl R Ring F K F 0 ˙ D A F = 0

Proof

Step Hyp Ref Expression
1 deg1sclle.d D = deg 1 R
2 deg1sclle.p P = Poly 1 R
3 deg1sclle.k K = Base R
4 deg1sclle.a A = algSc P
5 deg1scl.z 0 ˙ = 0 R
6 1 2 3 4 deg1sclle R Ring F K D A F 0
7 6 3adant3 R Ring F K F 0 ˙ D A F 0
8 simp1 R Ring F K F 0 ˙ R Ring
9 eqid Base P = Base P
10 2 4 3 9 ply1sclcl R Ring F K A F Base P
11 10 3adant3 R Ring F K F 0 ˙ A F Base P
12 eqid 0 P = 0 P
13 2 4 5 12 3 ply1scln0 R Ring F K F 0 ˙ A F 0 P
14 1 2 12 9 deg1nn0cl R Ring A F Base P A F 0 P D A F 0
15 8 11 13 14 syl3anc R Ring F K F 0 ˙ D A F 0
16 nn0le0eq0 D A F 0 D A F 0 D A F = 0
17 15 16 syl R Ring F K F 0 ˙ D A F 0 D A F = 0
18 7 17 mpbid R Ring F K F 0 ˙ D A F = 0