Metamath Proof Explorer


Theorem deg1sclle

Description: A scalar polynomial has nonpositive degree. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Hypotheses deg1sclle.d D = deg 1 R
deg1sclle.p P = Poly 1 R
deg1sclle.k K = Base R
deg1sclle.a A = algSc P
Assertion deg1sclle R Ring F K D A F 0

Proof

Step Hyp Ref Expression
1 deg1sclle.d D = deg 1 R
2 deg1sclle.p P = Poly 1 R
3 deg1sclle.k K = Base R
4 deg1sclle.a A = algSc P
5 2 4 3 ply1sclid R Ring F K F = coe 1 A F 0
6 5 fveq2d R Ring F K A F = A coe 1 A F 0
7 eqid Base P = Base P
8 2 4 3 7 ply1sclcl R Ring F K A F Base P
9 1 2 7 4 deg1le0 R Ring A F Base P D A F 0 A F = A coe 1 A F 0
10 8 9 syldan R Ring F K D A F 0 A F = A coe 1 A F 0
11 6 10 mpbird R Ring F K D A F 0