Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Polynomial degrees
deg1sclle
Next ⟩
deg1scl
Metamath Proof Explorer
Ascii
Unicode
Theorem
deg1sclle
Description:
A scalar polynomial has nonpositive degree.
(Contributed by
Stefan O'Rear
, 29-Mar-2015)
Ref
Expression
Hypotheses
deg1sclle.d
⊢
D
=
deg
1
⁡
R
deg1sclle.p
⊢
P
=
Poly
1
⁡
R
deg1sclle.k
⊢
K
=
Base
R
deg1sclle.a
⊢
A
=
algSc
⁡
P
Assertion
deg1sclle
⊢
R
∈
Ring
∧
F
∈
K
→
D
⁡
A
⁡
F
≤
0
Proof
Step
Hyp
Ref
Expression
1
deg1sclle.d
⊢
D
=
deg
1
⁡
R
2
deg1sclle.p
⊢
P
=
Poly
1
⁡
R
3
deg1sclle.k
⊢
K
=
Base
R
4
deg1sclle.a
⊢
A
=
algSc
⁡
P
5
2
4
3
ply1sclid
⊢
R
∈
Ring
∧
F
∈
K
→
F
=
coe
1
⁡
A
⁡
F
⁡
0
6
5
fveq2d
⊢
R
∈
Ring
∧
F
∈
K
→
A
⁡
F
=
A
⁡
coe
1
⁡
A
⁡
F
⁡
0
7
eqid
⊢
Base
P
=
Base
P
8
2
4
3
7
ply1sclcl
⊢
R
∈
Ring
∧
F
∈
K
→
A
⁡
F
∈
Base
P
9
1
2
7
4
deg1le0
⊢
R
∈
Ring
∧
A
⁡
F
∈
Base
P
→
D
⁡
A
⁡
F
≤
0
↔
A
⁡
F
=
A
⁡
coe
1
⁡
A
⁡
F
⁡
0
10
8
9
syldan
⊢
R
∈
Ring
∧
F
∈
K
→
D
⁡
A
⁡
F
≤
0
↔
A
⁡
F
=
A
⁡
coe
1
⁡
A
⁡
F
⁡
0
11
6
10
mpbird
⊢
R
∈
Ring
∧
F
∈
K
→
D
⁡
A
⁡
F
≤
0