Metamath Proof Explorer


Theorem deg1sub

Description: Exact degree of a difference of two polynomials of unequal degree. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1addle.y Y = Poly 1 R
deg1addle.d D = deg 1 R
deg1addle.r φ R Ring
deg1suble.b B = Base Y
deg1suble.m - ˙ = - Y
deg1suble.f φ F B
deg1suble.g φ G B
deg1sub.l φ D G < D F
Assertion deg1sub φ D F - ˙ G = D F

Proof

Step Hyp Ref Expression
1 deg1addle.y Y = Poly 1 R
2 deg1addle.d D = deg 1 R
3 deg1addle.r φ R Ring
4 deg1suble.b B = Base Y
5 deg1suble.m - ˙ = - Y
6 deg1suble.f φ F B
7 deg1suble.g φ G B
8 deg1sub.l φ D G < D F
9 eqid + Y = + Y
10 eqid inv g Y = inv g Y
11 4 9 10 5 grpsubval F B G B F - ˙ G = F + Y inv g Y G
12 6 7 11 syl2anc φ F - ˙ G = F + Y inv g Y G
13 12 fveq2d φ D F - ˙ G = D F + Y inv g Y G
14 1 ply1ring R Ring Y Ring
15 ringgrp Y Ring Y Grp
16 3 14 15 3syl φ Y Grp
17 4 10 grpinvcl Y Grp G B inv g Y G B
18 16 7 17 syl2anc φ inv g Y G B
19 1 2 3 4 10 7 deg1invg φ D inv g Y G = D G
20 19 8 eqbrtrd φ D inv g Y G < D F
21 1 2 3 4 9 6 18 20 deg1add φ D F + Y inv g Y G = D F
22 13 21 eqtrd φ D F - ˙ G = D F