Metamath Proof Explorer


Theorem deg1suble

Description: The degree of a difference of polynomials is bounded by the maximum of degrees. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1addle.y Y = Poly 1 R
deg1addle.d D = deg 1 R
deg1addle.r φ R Ring
deg1suble.b B = Base Y
deg1suble.m - ˙ = - Y
deg1suble.f φ F B
deg1suble.g φ G B
Assertion deg1suble φ D F - ˙ G if D F D G D G D F

Proof

Step Hyp Ref Expression
1 deg1addle.y Y = Poly 1 R
2 deg1addle.d D = deg 1 R
3 deg1addle.r φ R Ring
4 deg1suble.b B = Base Y
5 deg1suble.m - ˙ = - Y
6 deg1suble.f φ F B
7 deg1suble.g φ G B
8 eqid + Y = + Y
9 1 ply1ring R Ring Y Ring
10 ringgrp Y Ring Y Grp
11 3 9 10 3syl φ Y Grp
12 eqid inv g Y = inv g Y
13 4 12 grpinvcl Y Grp G B inv g Y G B
14 11 7 13 syl2anc φ inv g Y G B
15 1 2 3 4 8 6 14 deg1addle φ D F + Y inv g Y G if D F D inv g Y G D inv g Y G D F
16 4 8 12 5 grpsubval F B G B F - ˙ G = F + Y inv g Y G
17 6 7 16 syl2anc φ F - ˙ G = F + Y inv g Y G
18 17 fveq2d φ D F - ˙ G = D F + Y inv g Y G
19 1 2 3 4 12 7 deg1invg φ D inv g Y G = D G
20 19 eqcomd φ D G = D inv g Y G
21 20 breq2d φ D F D G D F D inv g Y G
22 21 20 ifbieq1d φ if D F D G D G D F = if D F D inv g Y G D inv g Y G D F
23 15 18 22 3brtr4d φ D F - ˙ G if D F D G D G D F