Metamath Proof Explorer


Theorem deg1tmle

Description: Limiting degree of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses deg1tm.d D=deg1R
deg1tm.k K=BaseR
deg1tm.p P=Poly1R
deg1tm.x X=var1R
deg1tm.m ·˙=P
deg1tm.n N=mulGrpP
deg1tm.e ×˙=N
Assertion deg1tmle RRingCKF0DC·˙F×˙XF

Proof

Step Hyp Ref Expression
1 deg1tm.d D=deg1R
2 deg1tm.k K=BaseR
3 deg1tm.p P=Poly1R
4 deg1tm.x X=var1R
5 deg1tm.m ·˙=P
6 deg1tm.n N=mulGrpP
7 deg1tm.e ×˙=N
8 eqid 0R=0R
9 simpl1 RRingCKF0x0F<xRRing
10 simpl2 RRingCKF0x0F<xCK
11 simpl3 RRingCKF0x0F<xF0
12 simprl RRingCKF0x0F<xx0
13 11 nn0red RRingCKF0x0F<xF
14 simprr RRingCKF0x0F<xF<x
15 13 14 ltned RRingCKF0x0F<xFx
16 8 2 3 4 5 6 7 9 10 11 12 15 coe1tmfv2 RRingCKF0x0F<xcoe1C·˙F×˙Xx=0R
17 16 expr RRingCKF0x0F<xcoe1C·˙F×˙Xx=0R
18 17 ralrimiva RRingCKF0x0F<xcoe1C·˙F×˙Xx=0R
19 eqid BaseP=BaseP
20 2 3 4 5 6 7 19 ply1tmcl RRingCKF0C·˙F×˙XBaseP
21 nn0re F0F
22 21 rexrd F0F*
23 22 3ad2ant3 RRingCKF0F*
24 eqid coe1C·˙F×˙X=coe1C·˙F×˙X
25 1 3 19 8 24 deg1leb C·˙F×˙XBasePF*DC·˙F×˙XFx0F<xcoe1C·˙F×˙Xx=0R
26 20 23 25 syl2anc RRingCKF0DC·˙F×˙XFx0F<xcoe1C·˙F×˙Xx=0R
27 18 26 mpbird RRingCKF0DC·˙F×˙XF