Metamath Proof Explorer


Theorem deg1tmle

Description: Limiting degree of a polynomial term. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses deg1tm.d D = deg 1 R
deg1tm.k K = Base R
deg1tm.p P = Poly 1 R
deg1tm.x X = var 1 R
deg1tm.m · ˙ = P
deg1tm.n N = mulGrp P
deg1tm.e × ˙ = N
Assertion deg1tmle R Ring C K F 0 D C · ˙ F × ˙ X F

Proof

Step Hyp Ref Expression
1 deg1tm.d D = deg 1 R
2 deg1tm.k K = Base R
3 deg1tm.p P = Poly 1 R
4 deg1tm.x X = var 1 R
5 deg1tm.m · ˙ = P
6 deg1tm.n N = mulGrp P
7 deg1tm.e × ˙ = N
8 eqid 0 R = 0 R
9 simpl1 R Ring C K F 0 x 0 F < x R Ring
10 simpl2 R Ring C K F 0 x 0 F < x C K
11 simpl3 R Ring C K F 0 x 0 F < x F 0
12 simprl R Ring C K F 0 x 0 F < x x 0
13 11 nn0red R Ring C K F 0 x 0 F < x F
14 simprr R Ring C K F 0 x 0 F < x F < x
15 13 14 ltned R Ring C K F 0 x 0 F < x F x
16 8 2 3 4 5 6 7 9 10 11 12 15 coe1tmfv2 R Ring C K F 0 x 0 F < x coe 1 C · ˙ F × ˙ X x = 0 R
17 16 expr R Ring C K F 0 x 0 F < x coe 1 C · ˙ F × ˙ X x = 0 R
18 17 ralrimiva R Ring C K F 0 x 0 F < x coe 1 C · ˙ F × ˙ X x = 0 R
19 eqid Base P = Base P
20 2 3 4 5 6 7 19 ply1tmcl R Ring C K F 0 C · ˙ F × ˙ X Base P
21 nn0re F 0 F
22 21 rexrd F 0 F *
23 22 3ad2ant3 R Ring C K F 0 F *
24 eqid coe 1 C · ˙ F × ˙ X = coe 1 C · ˙ F × ˙ X
25 1 3 19 8 24 deg1leb C · ˙ F × ˙ X Base P F * D C · ˙ F × ˙ X F x 0 F < x coe 1 C · ˙ F × ˙ X x = 0 R
26 20 23 25 syl2anc R Ring C K F 0 D C · ˙ F × ˙ X F x 0 F < x coe 1 C · ˙ F × ˙ X x = 0 R
27 18 26 mpbird R Ring C K F 0 D C · ˙ F × ˙ X F