Metamath Proof Explorer


Theorem deg1val

Description: Value of the univariate degree as a supremum. (Contributed by Stefan O'Rear, 29-Mar-2015) (Revised by AV, 25-Jul-2019)

Ref Expression
Hypotheses deg1leb.d D = deg 1 R
deg1leb.p P = Poly 1 R
deg1leb.b B = Base P
deg1leb.y 0 ˙ = 0 R
deg1leb.a A = coe 1 F
Assertion deg1val F B D F = sup A supp 0 ˙ * <

Proof

Step Hyp Ref Expression
1 deg1leb.d D = deg 1 R
2 deg1leb.p P = Poly 1 R
3 deg1leb.b B = Base P
4 deg1leb.y 0 ˙ = 0 R
5 deg1leb.a A = coe 1 F
6 1 deg1fval D = 1 𝑜 mDeg R
7 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
8 2 3 ply1bas B = Base 1 𝑜 mPoly R
9 psr1baslem 0 1 𝑜 = y 0 1 𝑜 | y -1 Fin
10 tdeglem2 x 0 1 𝑜 x = x 0 1 𝑜 fld x
11 6 7 8 4 9 10 mdegval F B D F = sup x 0 1 𝑜 x F supp 0 ˙ * <
12 4 fvexi 0 ˙ V
13 suppimacnv F B 0 ˙ V F supp 0 ˙ = F -1 V 0 ˙
14 12 13 mpan2 F B F supp 0 ˙ = F -1 V 0 ˙
15 14 imaeq2d F B x 0 1 𝑜 x F supp 0 ˙ = x 0 1 𝑜 x F -1 V 0 ˙
16 imaco x 0 1 𝑜 x F -1 V 0 ˙ = x 0 1 𝑜 x F -1 V 0 ˙
17 15 16 eqtr4di F B x 0 1 𝑜 x F supp 0 ˙ = x 0 1 𝑜 x F -1 V 0 ˙
18 df1o2 1 𝑜 =
19 nn0ex 0 V
20 0ex V
21 eqid x 0 1 𝑜 x = x 0 1 𝑜 x
22 18 19 20 21 mapsncnv x 0 1 𝑜 x -1 = y 0 1 𝑜 × y
23 5 3 2 22 coe1fval2 F B A = F x 0 1 𝑜 x -1
24 23 cnveqd F B A -1 = F x 0 1 𝑜 x -1 -1
25 cnvco F x 0 1 𝑜 x -1 -1 = x 0 1 𝑜 x -1 -1 F -1
26 cocnvcnv1 x 0 1 𝑜 x -1 -1 F -1 = x 0 1 𝑜 x F -1
27 25 26 eqtri F x 0 1 𝑜 x -1 -1 = x 0 1 𝑜 x F -1
28 24 27 eqtr2di F B x 0 1 𝑜 x F -1 = A -1
29 28 imaeq1d F B x 0 1 𝑜 x F -1 V 0 ˙ = A -1 V 0 ˙
30 17 29 eqtrd F B x 0 1 𝑜 x F supp 0 ˙ = A -1 V 0 ˙
31 5 fvexi A V
32 suppimacnv A V 0 ˙ V A supp 0 ˙ = A -1 V 0 ˙
33 32 eqcomd A V 0 ˙ V A -1 V 0 ˙ = A supp 0 ˙
34 31 12 33 mp2an A -1 V 0 ˙ = A supp 0 ˙
35 30 34 eqtrdi F B x 0 1 𝑜 x F supp 0 ˙ = A supp 0 ˙
36 35 supeq1d F B sup x 0 1 𝑜 x F supp 0 ˙ * < = sup A supp 0 ˙ * <
37 11 36 eqtrd F B D F = sup A supp 0 ˙ * <