Metamath Proof Explorer


Theorem deg1vsca

Description: The degree of a scalar times a polynomial is exactly the degree of the original polynomial when the scalar is not a zero divisor. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses deg1addle.y Y = Poly 1 R
deg1addle.d D = deg 1 R
deg1addle.r φ R Ring
deg1vsca.b B = Base Y
deg1vsca.e E = RLReg R
deg1vsca.p · ˙ = Y
deg1vsca.f φ F E
deg1vsca.g φ G B
Assertion deg1vsca φ D F · ˙ G = D G

Proof

Step Hyp Ref Expression
1 deg1addle.y Y = Poly 1 R
2 deg1addle.d D = deg 1 R
3 deg1addle.r φ R Ring
4 deg1vsca.b B = Base Y
5 deg1vsca.e E = RLReg R
6 deg1vsca.p · ˙ = Y
7 deg1vsca.f φ F E
8 deg1vsca.g φ G B
9 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
10 2 deg1fval D = 1 𝑜 mDeg R
11 1on 1 𝑜 On
12 11 a1i φ 1 𝑜 On
13 eqid PwSer 1 R = PwSer 1 R
14 1 13 4 ply1bas B = Base 1 𝑜 mPoly R
15 1 9 6 ply1vsca · ˙ = 1 𝑜 mPoly R
16 9 10 12 3 14 5 15 7 8 mdegvsca φ D F · ˙ G = D G