Metamath Proof Explorer


Theorem deg1vscale

Description: The degree of a scalar times a polynomial is at most the degree of the original polynomial. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypotheses deg1addle.y Y = Poly 1 R
deg1addle.d D = deg 1 R
deg1addle.r φ R Ring
deg1vscale.b B = Base Y
deg1vscale.k K = Base R
deg1vscale.p · ˙ = Y
deg1vscale.f φ F K
deg1vscale.g φ G B
Assertion deg1vscale φ D F · ˙ G D G

Proof

Step Hyp Ref Expression
1 deg1addle.y Y = Poly 1 R
2 deg1addle.d D = deg 1 R
3 deg1addle.r φ R Ring
4 deg1vscale.b B = Base Y
5 deg1vscale.k K = Base R
6 deg1vscale.p · ˙ = Y
7 deg1vscale.f φ F K
8 deg1vscale.g φ G B
9 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
10 2 deg1fval D = 1 𝑜 mDeg R
11 1on 1 𝑜 On
12 11 a1i φ 1 𝑜 On
13 eqid PwSer 1 R = PwSer 1 R
14 1 13 4 ply1bas B = Base 1 𝑜 mPoly R
15 1 9 6 ply1vsca · ˙ = 1 𝑜 mPoly R
16 9 10 12 3 14 5 15 7 8 mdegvscale φ D F · ˙ G D G