Metamath Proof Explorer


Theorem deg1xrcl

Description: Closure of univariate polynomial degree in extended reals. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1xrf.d D = deg 1 R
deg1xrf.p P = Poly 1 R
deg1xrf.b B = Base P
Assertion deg1xrcl F B D F *

Proof

Step Hyp Ref Expression
1 deg1xrf.d D = deg 1 R
2 deg1xrf.p P = Poly 1 R
3 deg1xrf.b B = Base P
4 1 2 3 deg1xrf D : B *
5 4 ffvelrni F B D F *