Metamath Proof Explorer


Theorem deg1z

Description: Degree of the zero univariate polynomial. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1z.d D = deg 1 R
deg1z.p P = Poly 1 R
deg1z.z 0 ˙ = 0 P
Assertion deg1z R Ring D 0 ˙ = −∞

Proof

Step Hyp Ref Expression
1 deg1z.d D = deg 1 R
2 deg1z.p P = Poly 1 R
3 deg1z.z 0 ˙ = 0 P
4 1on 1 𝑜 On
5 1 deg1fval D = 1 𝑜 mDeg R
6 eqid 1 𝑜 mPoly R = 1 𝑜 mPoly R
7 6 2 3 ply1mpl0 0 ˙ = 0 1 𝑜 mPoly R
8 5 6 7 mdeg0 1 𝑜 On R Ring D 0 ˙ = −∞
9 4 8 mpan R Ring D 0 ˙ = −∞