Metamath Proof Explorer


Theorem demoivre

Description: De Moivre's Formula. Proof by induction given at http://en.wikipedia.org/wiki/De_Moivre's_formula , but restricted to nonnegative integer powers. See also demoivreALT for an alternate longer proof not using the exponential function. (Contributed by NM, 24-Jul-2007)

Ref Expression
Assertion demoivre A N cos A + i sin A N = cos N A + i sin N A

Proof

Step Hyp Ref Expression
1 ax-icn i
2 mulcl i A i A
3 1 2 mpan A i A
4 efexp i A N e N i A = e i A N
5 3 4 sylan A N e N i A = e i A N
6 zcn N N
7 mul12 N i A N i A = i N A
8 1 7 mp3an2 N A N i A = i N A
9 8 fveq2d N A e N i A = e i N A
10 mulcl N A N A
11 efival N A e i N A = cos N A + i sin N A
12 10 11 syl N A e i N A = cos N A + i sin N A
13 9 12 eqtrd N A e N i A = cos N A + i sin N A
14 13 ancoms A N e N i A = cos N A + i sin N A
15 6 14 sylan2 A N e N i A = cos N A + i sin N A
16 efival A e i A = cos A + i sin A
17 16 oveq1d A e i A N = cos A + i sin A N
18 17 adantr A N e i A N = cos A + i sin A N
19 5 15 18 3eqtr3rd A N cos A + i sin A N = cos N A + i sin N A