Metamath Proof Explorer


Theorem demoivreALT

Description: Alternate proof of demoivre . It is longer but does not use the exponential function. This is Metamath 100 proof #17. (Contributed by Steve Rodriguez, 10-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion demoivreALT A N 0 cos A + i sin A N = cos N A + i sin N A

Proof

Step Hyp Ref Expression
1 oveq2 x = 0 cos A + i sin A x = cos A + i sin A 0
2 oveq1 x = 0 x A = 0 A
3 2 fveq2d x = 0 cos x A = cos 0 A
4 2 fveq2d x = 0 sin x A = sin 0 A
5 4 oveq2d x = 0 i sin x A = i sin 0 A
6 3 5 oveq12d x = 0 cos x A + i sin x A = cos 0 A + i sin 0 A
7 1 6 eqeq12d x = 0 cos A + i sin A x = cos x A + i sin x A cos A + i sin A 0 = cos 0 A + i sin 0 A
8 7 imbi2d x = 0 A cos A + i sin A x = cos x A + i sin x A A cos A + i sin A 0 = cos 0 A + i sin 0 A
9 oveq2 x = k cos A + i sin A x = cos A + i sin A k
10 oveq1 x = k x A = k A
11 10 fveq2d x = k cos x A = cos k A
12 10 fveq2d x = k sin x A = sin k A
13 12 oveq2d x = k i sin x A = i sin k A
14 11 13 oveq12d x = k cos x A + i sin x A = cos k A + i sin k A
15 9 14 eqeq12d x = k cos A + i sin A x = cos x A + i sin x A cos A + i sin A k = cos k A + i sin k A
16 15 imbi2d x = k A cos A + i sin A x = cos x A + i sin x A A cos A + i sin A k = cos k A + i sin k A
17 oveq2 x = k + 1 cos A + i sin A x = cos A + i sin A k + 1
18 oveq1 x = k + 1 x A = k + 1 A
19 18 fveq2d x = k + 1 cos x A = cos k + 1 A
20 18 fveq2d x = k + 1 sin x A = sin k + 1 A
21 20 oveq2d x = k + 1 i sin x A = i sin k + 1 A
22 19 21 oveq12d x = k + 1 cos x A + i sin x A = cos k + 1 A + i sin k + 1 A
23 17 22 eqeq12d x = k + 1 cos A + i sin A x = cos x A + i sin x A cos A + i sin A k + 1 = cos k + 1 A + i sin k + 1 A
24 23 imbi2d x = k + 1 A cos A + i sin A x = cos x A + i sin x A A cos A + i sin A k + 1 = cos k + 1 A + i sin k + 1 A
25 oveq2 x = N cos A + i sin A x = cos A + i sin A N
26 oveq1 x = N x A = N A
27 26 fveq2d x = N cos x A = cos N A
28 26 fveq2d x = N sin x A = sin N A
29 28 oveq2d x = N i sin x A = i sin N A
30 27 29 oveq12d x = N cos x A + i sin x A = cos N A + i sin N A
31 25 30 eqeq12d x = N cos A + i sin A x = cos x A + i sin x A cos A + i sin A N = cos N A + i sin N A
32 31 imbi2d x = N A cos A + i sin A x = cos x A + i sin x A A cos A + i sin A N = cos N A + i sin N A
33 coscl A cos A
34 ax-icn i
35 sincl A sin A
36 mulcl i sin A i sin A
37 34 35 36 sylancr A i sin A
38 addcl cos A i sin A cos A + i sin A
39 33 37 38 syl2anc A cos A + i sin A
40 exp0 cos A + i sin A cos A + i sin A 0 = 1
41 39 40 syl A cos A + i sin A 0 = 1
42 mul02 A 0 A = 0
43 42 fveq2d A cos 0 A = cos 0
44 cos0 cos 0 = 1
45 43 44 eqtrdi A cos 0 A = 1
46 42 fveq2d A sin 0 A = sin 0
47 sin0 sin 0 = 0
48 46 47 eqtrdi A sin 0 A = 0
49 48 oveq2d A i sin 0 A = i 0
50 34 mul01i i 0 = 0
51 49 50 eqtrdi A i sin 0 A = 0
52 45 51 oveq12d A cos 0 A + i sin 0 A = 1 + 0
53 ax-1cn 1
54 53 addid1i 1 + 0 = 1
55 52 54 eqtrdi A cos 0 A + i sin 0 A = 1
56 41 55 eqtr4d A cos A + i sin A 0 = cos 0 A + i sin 0 A
57 expp1 cos A + i sin A k 0 cos A + i sin A k + 1 = cos A + i sin A k cos A + i sin A
58 39 57 sylan A k 0 cos A + i sin A k + 1 = cos A + i sin A k cos A + i sin A
59 58 ancoms k 0 A cos A + i sin A k + 1 = cos A + i sin A k cos A + i sin A
60 59 adantr k 0 A cos A + i sin A k = cos k A + i sin k A cos A + i sin A k + 1 = cos A + i sin A k cos A + i sin A
61 oveq1 cos A + i sin A k = cos k A + i sin k A cos A + i sin A k cos A + i sin A = cos k A + i sin k A cos A + i sin A
62 61 adantl k 0 A cos A + i sin A k = cos k A + i sin k A cos A + i sin A k cos A + i sin A = cos k A + i sin k A cos A + i sin A
63 nn0cn k 0 k
64 mulcl k A k A
65 63 64 sylan k 0 A k A
66 sinadd k A A sin k A + A = sin k A cos A + cos k A sin A
67 65 66 sylancom k 0 A sin k A + A = sin k A cos A + cos k A sin A
68 33 adantl k 0 A cos A
69 sincl k A sin k A
70 65 69 syl k 0 A sin k A
71 mulcom cos A sin k A cos A sin k A = sin k A cos A
72 68 70 71 syl2anc k 0 A cos A sin k A = sin k A cos A
73 72 oveq1d k 0 A cos A sin k A + cos k A sin A = sin k A cos A + cos k A sin A
74 mulcl cos A sin k A cos A sin k A
75 68 70 74 syl2anc k 0 A cos A sin k A
76 coscl k A cos k A
77 65 76 syl k 0 A cos k A
78 35 adantl k 0 A sin A
79 mulcl cos k A sin A cos k A sin A
80 77 78 79 syl2anc k 0 A cos k A sin A
81 addcom cos A sin k A cos k A sin A cos A sin k A + cos k A sin A = cos k A sin A + cos A sin k A
82 75 80 81 syl2anc k 0 A cos A sin k A + cos k A sin A = cos k A sin A + cos A sin k A
83 67 73 82 3eqtr2d k 0 A sin k A + A = cos k A sin A + cos A sin k A
84 83 oveq2d k 0 A i sin k A + A = i cos k A sin A + cos A sin k A
85 84 oveq2d k 0 A cos k A + A + i sin k A + A = cos k A + A + i cos k A sin A + cos A sin k A
86 adddir k 1 A k + 1 A = k A + 1 A
87 mulid2 A 1 A = A
88 87 oveq2d A k A + 1 A = k A + A
89 88 3ad2ant3 k 1 A k A + 1 A = k A + A
90 86 89 eqtrd k 1 A k + 1 A = k A + A
91 63 90 syl3an1 k 0 1 A k + 1 A = k A + A
92 53 91 mp3an2 k 0 A k + 1 A = k A + A
93 92 fveq2d k 0 A cos k + 1 A = cos k A + A
94 92 fveq2d k 0 A sin k + 1 A = sin k A + A
95 94 oveq2d k 0 A i sin k + 1 A = i sin k A + A
96 93 95 oveq12d k 0 A cos k + 1 A + i sin k + 1 A = cos k A + A + i sin k A + A
97 mulcl i sin k A i sin k A
98 34 97 mpan sin k A i sin k A
99 65 69 98 3syl k 0 A i sin k A
100 33 37 jca A cos A i sin A
101 100 adantl k 0 A cos A i sin A
102 muladd cos k A i sin k A cos A i sin A cos k A + i sin k A cos A + i sin A = cos k A cos A + i sin A i sin k A + cos k A i sin A + cos A i sin k A
103 77 99 101 102 syl21anc k 0 A cos k A + i sin k A cos A + i sin A = cos k A cos A + i sin A i sin k A + cos k A i sin A + cos A i sin k A
104 78 34 jctil k 0 A i sin A
105 70 34 jctil k 0 A i sin k A
106 mul4 i sin A i sin k A i sin A i sin k A = i i sin A sin k A
107 ixi i i = 1
108 107 oveq1i i i sin A sin k A = -1 sin A sin k A
109 106 108 eqtrdi i sin A i sin k A i sin A i sin k A = -1 sin A sin k A
110 104 105 109 syl2anc k 0 A i sin A i sin k A = -1 sin A sin k A
111 110 oveq2d k 0 A cos k A cos A + i sin A i sin k A = cos k A cos A + -1 sin A sin k A
112 111 oveq1d k 0 A cos k A cos A + i sin A i sin k A + cos k A i sin A + cos A i sin k A = cos k A cos A + -1 sin A sin k A + cos k A i sin A + cos A i sin k A
113 mul12 cos k A i sin A cos k A i sin A = i cos k A sin A
114 34 113 mp3an2 cos k A sin A cos k A i sin A = i cos k A sin A
115 77 78 114 syl2anc k 0 A cos k A i sin A = i cos k A sin A
116 mul12 cos A i sin k A cos A i sin k A = i cos A sin k A
117 34 116 mp3an2 cos A sin k A cos A i sin k A = i cos A sin k A
118 68 70 117 syl2anc k 0 A cos A i sin k A = i cos A sin k A
119 115 118 oveq12d k 0 A cos k A i sin A + cos A i sin k A = i cos k A sin A + i cos A sin k A
120 adddi i cos k A sin A cos A sin k A i cos k A sin A + cos A sin k A = i cos k A sin A + i cos A sin k A
121 34 120 mp3an1 cos k A sin A cos A sin k A i cos k A sin A + cos A sin k A = i cos k A sin A + i cos A sin k A
122 80 75 121 syl2anc k 0 A i cos k A sin A + cos A sin k A = i cos k A sin A + i cos A sin k A
123 119 122 eqtr4d k 0 A cos k A i sin A + cos A i sin k A = i cos k A sin A + cos A sin k A
124 123 oveq2d k 0 A cos k A cos A + -1 sin A sin k A + cos k A i sin A + cos A i sin k A = cos k A cos A + -1 sin A sin k A + i cos k A sin A + cos A sin k A
125 103 112 124 3eqtrd k 0 A cos k A + i sin k A cos A + i sin A = cos k A cos A + -1 sin A sin k A + i cos k A sin A + cos A sin k A
126 mulcl sin A sin k A sin A sin k A
127 78 70 126 syl2anc k 0 A sin A sin k A
128 mulm1 sin A sin k A -1 sin A sin k A = sin A sin k A
129 127 128 syl k 0 A -1 sin A sin k A = sin A sin k A
130 129 oveq2d k 0 A cos k A cos A + -1 sin A sin k A = cos k A cos A + sin A sin k A
131 130 oveq1d k 0 A cos k A cos A + -1 sin A sin k A + i cos k A sin A + cos A sin k A = cos k A cos A + sin A sin k A + i cos k A sin A + cos A sin k A
132 mulcl cos k A cos A cos k A cos A
133 77 68 132 syl2anc k 0 A cos k A cos A
134 negsub cos k A cos A sin A sin k A cos k A cos A + sin A sin k A = cos k A cos A sin A sin k A
135 133 127 134 syl2anc k 0 A cos k A cos A + sin A sin k A = cos k A cos A sin A sin k A
136 135 oveq1d k 0 A cos k A cos A + sin A sin k A + i cos k A sin A + cos A sin k A = cos k A cos A - sin A sin k A + i cos k A sin A + cos A sin k A
137 125 131 136 3eqtrd k 0 A cos k A + i sin k A cos A + i sin A = cos k A cos A - sin A sin k A + i cos k A sin A + cos A sin k A
138 cosadd k A A cos k A + A = cos k A cos A sin k A sin A
139 65 138 sylancom k 0 A cos k A + A = cos k A cos A sin k A sin A
140 mulcom sin k A sin A sin k A sin A = sin A sin k A
141 70 78 140 syl2anc k 0 A sin k A sin A = sin A sin k A
142 141 oveq2d k 0 A cos k A cos A sin k A sin A = cos k A cos A sin A sin k A
143 139 142 eqtrd k 0 A cos k A + A = cos k A cos A sin A sin k A
144 143 oveq1d k 0 A cos k A + A + i cos k A sin A + cos A sin k A = cos k A cos A - sin A sin k A + i cos k A sin A + cos A sin k A
145 137 144 eqtr4d k 0 A cos k A + i sin k A cos A + i sin A = cos k A + A + i cos k A sin A + cos A sin k A
146 85 96 145 3eqtr4rd k 0 A cos k A + i sin k A cos A + i sin A = cos k + 1 A + i sin k + 1 A
147 146 adantr k 0 A cos A + i sin A k = cos k A + i sin k A cos k A + i sin k A cos A + i sin A = cos k + 1 A + i sin k + 1 A
148 60 62 147 3eqtrd k 0 A cos A + i sin A k = cos k A + i sin k A cos A + i sin A k + 1 = cos k + 1 A + i sin k + 1 A
149 148 exp31 k 0 A cos A + i sin A k = cos k A + i sin k A cos A + i sin A k + 1 = cos k + 1 A + i sin k + 1 A
150 149 a2d k 0 A cos A + i sin A k = cos k A + i sin k A A cos A + i sin A k + 1 = cos k + 1 A + i sin k + 1 A
151 8 16 24 32 56 150 nn0ind N 0 A cos A + i sin A N = cos N A + i sin N A
152 151 impcom A N 0 cos A + i sin A N = cos N A + i sin N A