Metamath Proof Explorer


Theorem derangsn

Description: The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015)

Ref Expression
Hypothesis derang.d D=xFinf|f:x1-1 ontoxyxfyy
Assertion derangsn AVDA=0

Proof

Step Hyp Ref Expression
1 derang.d D=xFinf|f:x1-1 ontoxyxfyy
2 snfi AFin
3 1 derangval AFinDA=f|f:A1-1 ontoAyAfyy
4 2 3 ax-mp DA=f|f:A1-1 ontoAyAfyy
5 f1of f:A1-1 ontoAf:AA
6 5 adantr f:A1-1 ontoAyAfyyf:AA
7 snidg AVAA
8 ffvelcdm f:AAAAfAA
9 6 7 8 syl2anr AVf:A1-1 ontoAyAfyyfAA
10 simpr f:A1-1 ontoAyAfyyyAfyy
11 fveq2 y=Afy=fA
12 id y=Ay=A
13 11 12 neeq12d y=AfyyfAA
14 13 rspcva AAyAfyyfAA
15 7 10 14 syl2an AVf:A1-1 ontoAyAfyyfAA
16 nelsn fAA¬fAA
17 15 16 syl AVf:A1-1 ontoAyAfyy¬fAA
18 9 17 pm2.21dd AVf:A1-1 ontoAyAfyyf
19 18 ex AVf:A1-1 ontoAyAfyyf
20 19 abssdv AVf|f:A1-1 ontoAyAfyy
21 ss0 f|f:A1-1 ontoAyAfyyf|f:A1-1 ontoAyAfyy=
22 20 21 syl AVf|f:A1-1 ontoAyAfyy=
23 22 fveq2d AVf|f:A1-1 ontoAyAfyy=
24 4 23 eqtrid AVDA=
25 hash0 =0
26 24 25 eqtrdi AVDA=0