Metamath Proof Explorer


Definition df-0o

Description: Define the zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)

Ref Expression
Assertion df-0o 0 op = u NrmCVec , w NrmCVec BaseSet u × 0 vec w

Detailed syntax breakdown

Step Hyp Ref Expression
0 c0o class 0 op
1 vu setvar u
2 cnv class NrmCVec
3 vw setvar w
4 cba class BaseSet
5 1 cv setvar u
6 5 4 cfv class BaseSet u
7 cn0v class 0 vec
8 3 cv setvar w
9 8 7 cfv class 0 vec w
10 9 csn class 0 vec w
11 6 10 cxp class BaseSet u × 0 vec w
12 1 3 2 2 11 cmpo class u NrmCVec , w NrmCVec BaseSet u × 0 vec w
13 0 12 wceq wff 0 op = u NrmCVec , w NrmCVec BaseSet u × 0 vec w