Metamath Proof Explorer


Definition df-0v

Description: Define the zero vector in a normed complex vector space. (Contributed by NM, 24-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion df-0v 0vec=GId+v

Detailed syntax breakdown

Step Hyp Ref Expression
0 cn0v class0vec
1 cgi classGId
2 cpv class+v
3 1 2 ccom classGId+v
4 0 3 wceq wff0vec=GId+v