Metamath Proof Explorer


Definition df-1stc

Description: Define the class of all first-countable topologies. (Contributed by Jeff Hankins, 22-Aug-2009)

Ref Expression
Assertion df-1stc 1 st 𝜔 = j Top | x j y 𝒫 j y ω z j x z x y 𝒫 z

Detailed syntax breakdown

Step Hyp Ref Expression
0 c1stc class 1 st 𝜔
1 vj setvar j
2 ctop class Top
3 vx setvar x
4 1 cv setvar j
5 4 cuni class j
6 vy setvar y
7 4 cpw class 𝒫 j
8 6 cv setvar y
9 cdom class
10 com class ω
11 8 10 9 wbr wff y ω
12 vz setvar z
13 3 cv setvar x
14 12 cv setvar z
15 13 14 wcel wff x z
16 14 cpw class 𝒫 z
17 8 16 cin class y 𝒫 z
18 17 cuni class y 𝒫 z
19 13 18 wcel wff x y 𝒫 z
20 15 19 wi wff x z x y 𝒫 z
21 20 12 4 wral wff z j x z x y 𝒫 z
22 11 21 wa wff y ω z j x z x y 𝒫 z
23 22 6 7 wrex wff y 𝒫 j y ω z j x z x y 𝒫 z
24 23 3 5 wral wff x j y 𝒫 j y ω z j x z x y 𝒫 z
25 24 1 2 crab class j Top | x j y 𝒫 j y ω z j x z x y 𝒫 z
26 0 25 wceq wff 1 st 𝜔 = j Top | x j y 𝒫 j y ω z j x z x y 𝒫 z