Metamath Proof Explorer


Definition df-2ndc

Description: Define the class of all second-countable topologies. (Contributed by Jeff Hankins, 17-Jan-2010)

Ref Expression
Assertion df-2ndc 2 nd 𝜔 = j | x TopBases x ω topGen x = j

Detailed syntax breakdown

Step Hyp Ref Expression
0 c2ndc class 2 nd 𝜔
1 vj setvar j
2 vx setvar x
3 ctb class TopBases
4 2 cv setvar x
5 cdom class
6 com class ω
7 4 6 5 wbr wff x ω
8 ctg class topGen
9 4 8 cfv class topGen x
10 1 cv setvar j
11 9 10 wceq wff topGen x = j
12 7 11 wa wff x ω topGen x = j
13 12 2 3 wrex wff x TopBases x ω topGen x = j
14 13 1 cab class j | x TopBases x ω topGen x = j
15 0 14 wceq wff 2 nd 𝜔 = j | x TopBases x ω topGen x = j