Metamath Proof Explorer


Definition df-2ndc

Description: Define the class of all second-countable topologies. (Contributed by Jeff Hankins, 17-Jan-2010)

Ref Expression
Assertion df-2ndc 2nd𝜔=j|xTopBasesxωtopGenx=j

Detailed syntax breakdown

Step Hyp Ref Expression
0 c2ndc class2nd𝜔
1 vj setvarj
2 vx setvarx
3 ctb classTopBases
4 2 cv setvarx
5 cdom class
6 com classω
7 4 6 5 wbr wffxω
8 ctg classtopGen
9 4 8 cfv classtopGenx
10 1 cv setvarj
11 9 10 wceq wfftopGenx=j
12 7 11 wa wffxωtopGenx=j
13 12 2 3 wrex wffxTopBasesxωtopGenx=j
14 13 1 cab classj|xTopBasesxωtopGenx=j
15 0 14 wceq wff2nd𝜔=j|xTopBasesxωtopGenx=j