Metamath Proof Explorer


Definition df-aa

Description: Define the set of algebraic numbers. An algebraic number is a root of a nonzero polynomial over the integers. Here we construct it as the union of all kernels (preimages of { 0 } ) of all polynomials in ( PolyZZ ) , except the zero polynomial 0p . (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion df-aa 𝔸 = f Poly 0 𝑝 f -1 0

Detailed syntax breakdown

Step Hyp Ref Expression
0 caa class 𝔸
1 vf setvar f
2 cply class Poly
3 cz class
4 3 2 cfv class Poly
5 c0p class 0 𝑝
6 5 csn class 0 𝑝
7 4 6 cdif class Poly 0 𝑝
8 1 cv setvar f
9 8 ccnv class f -1
10 cc0 class 0
11 10 csn class 0
12 9 11 cima class f -1 0
13 1 7 12 ciun class f Poly 0 𝑝 f -1 0
14 0 13 wceq wff 𝔸 = f Poly 0 𝑝 f -1 0