Metamath Proof Explorer


Definition df-abv

Description: Define the set of absolute values on a ring. An absolute value is a generalization of the usual absolute value function df-abs to arbitrary rings. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Assertion df-abv AbsVal = r Ring f 0 +∞ Base r | x Base r f x = 0 x = 0 r y Base r f x r y = f x f y f x + r y f x + f y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cabv class AbsVal
1 vr setvar r
2 crg class Ring
3 vf setvar f
4 cc0 class 0
5 cico class .
6 cpnf class +∞
7 4 6 5 co class 0 +∞
8 cmap class 𝑚
9 cbs class Base
10 1 cv setvar r
11 10 9 cfv class Base r
12 7 11 8 co class 0 +∞ Base r
13 vx setvar x
14 3 cv setvar f
15 13 cv setvar x
16 15 14 cfv class f x
17 16 4 wceq wff f x = 0
18 c0g class 0 𝑔
19 10 18 cfv class 0 r
20 15 19 wceq wff x = 0 r
21 17 20 wb wff f x = 0 x = 0 r
22 vy setvar y
23 cmulr class 𝑟
24 10 23 cfv class r
25 22 cv setvar y
26 15 25 24 co class x r y
27 26 14 cfv class f x r y
28 cmul class ×
29 25 14 cfv class f y
30 16 29 28 co class f x f y
31 27 30 wceq wff f x r y = f x f y
32 cplusg class + 𝑔
33 10 32 cfv class + r
34 15 25 33 co class x + r y
35 34 14 cfv class f x + r y
36 cle class
37 caddc class +
38 16 29 37 co class f x + f y
39 35 38 36 wbr wff f x + r y f x + f y
40 31 39 wa wff f x r y = f x f y f x + r y f x + f y
41 40 22 11 wral wff y Base r f x r y = f x f y f x + r y f x + f y
42 21 41 wa wff f x = 0 x = 0 r y Base r f x r y = f x f y f x + r y f x + f y
43 42 13 11 wral wff x Base r f x = 0 x = 0 r y Base r f x r y = f x f y f x + r y f x + f y
44 43 3 12 crab class f 0 +∞ Base r | x Base r f x = 0 x = 0 r y Base r f x r y = f x f y f x + r y f x + f y
45 1 2 44 cmpt class r Ring f 0 +∞ Base r | x Base r f x = 0 x = 0 r y Base r f x r y = f x f y f x + r y f x + f y
46 0 45 wceq wff AbsVal = r Ring f 0 +∞ Base r | x Base r f x = 0 x = 0 r y Base r f x r y = f x f y f x + r y f x + f y