Metamath Proof Explorer


Definition df-ana

Description: Define the set of analytic functions, which are functions such that the Taylor series of the function at each point converges to the function in some neighborhood of the point. (Contributed by Mario Carneiro, 31-Dec-2016)

Ref Expression
Assertion df-ana Ana = s f 𝑝𝑚 s | x dom f x int TopOpen fld 𝑡 s dom f +∞ s Tayl f x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cana class Ana
1 vs setvar s
2 cr class
3 cc class
4 2 3 cpr class
5 vf setvar f
6 cpm class 𝑝𝑚
7 1 cv setvar s
8 3 7 6 co class 𝑝𝑚 s
9 vx setvar x
10 5 cv setvar f
11 10 cdm class dom f
12 9 cv setvar x
13 cnt class int
14 ctopn class TopOpen
15 ccnfld class fld
16 15 14 cfv class TopOpen fld
17 crest class 𝑡
18 16 7 17 co class TopOpen fld 𝑡 s
19 18 13 cfv class int TopOpen fld 𝑡 s
20 cpnf class +∞
21 ctayl class Tayl
22 7 10 21 co class s Tayl f
23 20 12 22 co class +∞ s Tayl f x
24 10 23 cin class f +∞ s Tayl f x
25 24 cdm class dom f +∞ s Tayl f x
26 25 19 cfv class int TopOpen fld 𝑡 s dom f +∞ s Tayl f x
27 12 26 wcel wff x int TopOpen fld 𝑡 s dom f +∞ s Tayl f x
28 27 9 11 wral wff x dom f x int TopOpen fld 𝑡 s dom f +∞ s Tayl f x
29 28 5 8 crab class f 𝑝𝑚 s | x dom f x int TopOpen fld 𝑡 s dom f +∞ s Tayl f x
30 1 4 29 cmpt class s f 𝑝𝑚 s | x dom f x int TopOpen fld 𝑡 s dom f +∞ s Tayl f x
31 0 30 wceq wff Ana = s f 𝑝𝑚 s | x dom f x int TopOpen fld 𝑡 s dom f +∞ s Tayl f x