Metamath Proof Explorer


Definition df-asp

Description: Define the algebraic span of a set of vectors in an algebra. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Assertion df-asp AlgSpan = w AssAlg s 𝒫 Base w t SubRing w LSubSp w | s t

Detailed syntax breakdown

Step Hyp Ref Expression
0 casp class AlgSpan
1 vw setvar w
2 casa class AssAlg
3 vs setvar s
4 cbs class Base
5 1 cv setvar w
6 5 4 cfv class Base w
7 6 cpw class 𝒫 Base w
8 vt setvar t
9 csubrg class SubRing
10 5 9 cfv class SubRing w
11 clss class LSubSp
12 5 11 cfv class LSubSp w
13 10 12 cin class SubRing w LSubSp w
14 3 cv setvar s
15 8 cv setvar t
16 14 15 wss wff s t
17 16 8 13 crab class t SubRing w LSubSp w | s t
18 17 cint class t SubRing w LSubSp w | s t
19 3 7 18 cmpt class s 𝒫 Base w t SubRing w LSubSp w | s t
20 1 2 19 cmpt class w AssAlg s 𝒫 Base w t SubRing w LSubSp w | s t
21 0 20 wceq wff AlgSpan = w AssAlg s 𝒫 Base w t SubRing w LSubSp w | s t