Metamath Proof Explorer


Definition df-atl

Description: Define the class of atomic lattices, in which every nonzero element is greater than or equal to an atom. We also ensure the existence of a lattice zero, since a lattice by itself may not have a zero. (Contributed by NM, 18-Sep-2011) (Revised by NM, 14-Sep-2018)

Ref Expression
Assertion df-atl AtLat = k Lat | Base k dom glb k x Base k x 0. k p Atoms k p k x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cal class AtLat
1 vk setvar k
2 clat class Lat
3 cbs class Base
4 1 cv setvar k
5 4 3 cfv class Base k
6 cglb class glb
7 4 6 cfv class glb k
8 7 cdm class dom glb k
9 5 8 wcel wff Base k dom glb k
10 vx setvar x
11 10 cv setvar x
12 cp0 class 0.
13 4 12 cfv class 0. k
14 11 13 wne wff x 0. k
15 vp setvar p
16 catm class Atoms
17 4 16 cfv class Atoms k
18 15 cv setvar p
19 cple class le
20 4 19 cfv class k
21 18 11 20 wbr wff p k x
22 21 15 17 wrex wff p Atoms k p k x
23 14 22 wi wff x 0. k p Atoms k p k x
24 23 10 5 wral wff x Base k x 0. k p Atoms k p k x
25 9 24 wa wff Base k dom glb k x Base k x 0. k p Atoms k p k x
26 25 1 2 crab class k Lat | Base k dom glb k x Base k x 0. k p Atoms k p k x
27 0 26 wceq wff AtLat = k Lat | Base k dom glb k x Base k x 0. k p Atoms k p k x