Metamath Proof Explorer


Definition df-ba

Description: Define the base set of a normed complex vector space. (Contributed by NM, 23-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion df-ba BaseSet = x V ran + v x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cba class BaseSet
1 vx setvar x
2 cvv class V
3 cpv class + v
4 1 cv setvar x
5 4 3 cfv class + v x
6 5 crn class ran + v x
7 1 2 6 cmpt class x V ran + v x
8 0 7 wceq wff BaseSet = x V ran + v x