Metamath Proof Explorer


Definition df-bn

Description: Define the class of all Banach spaces. A Banach space is a normed vector space such that both the vector space and the scalar field are complete under their respective norm-induced metrics. (Contributed by NM, 5-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion df-bn Ban = w NrmVec CMetSp | Scalar w CMetSp

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbn class Ban
1 vw setvar w
2 cnvc class NrmVec
3 ccms class CMetSp
4 2 3 cin class NrmVec CMetSp
5 csca class Scalar
6 1 cv setvar w
7 6 5 cfv class Scalar w
8 7 3 wcel wff Scalar w CMetSp
9 8 1 4 crab class w NrmVec CMetSp | Scalar w CMetSp
10 0 9 wceq wff Ban = w NrmVec CMetSp | Scalar w CMetSp